这是我的代码,
from mpl_toolkits.axes_grid1 import make_axes_locatable # colorbar
from matplotlib import pyplot as plt
from matplotlib import cm # 3D surface color
import numpy as npdata1 = np.random.rand(10, 12)
data2 = np.random.rand(10, 12)
data3 = data1 - data2
vmin = min([data1.min(), data2.min(), data3.min()])
vmax = max([data1.max(), data2.max(), data2.max()])
fig, (ax_1, ax_2, ax_error) = plt.subplots(nrows=3, ncols=1, figsize=(6, 6))
ax_1.set_ylabel('x')
mesh_1 = ax_1.pcolormesh(data1.T, cmap = cm.coolwarm)
ax_2.set_ylabel('x')
mesh_2 = ax_2.pcolormesh(data2.T, cmap = cm.coolwarm)
mesh_error = ax_error.pcolormesh(data3.T, cmap = cm.coolwarm)
ax_error.set_ylabel('x')
ax_error.set_xlabel('t')
divider = make_axes_locatable(ax_2)
cax_val = divider.append_axes("right", size="2%", pad=.1)
fig.colorbar(mesh_2, ax=[ax_1, ax_2, ax_error], cax=cax_val)
fig.tight_layout()
plt.show()它会产生一个图像

然而,我期望的是它会生成下面的图片

有人能帮我解决这个问题吗?提前感谢任何有用的建议!
发布于 2019-07-04 09:05:36
在@JodyKlymak的帮助下,我终于解决了这个问题。关键在于使用shrink,即fig.colorbar(mesh_2, ax=[ax_1, ax_2, ax_error], shrink=0.3)。以下是解决方案
from matplotlib import pyplot as plt
from matplotlib import cm # 3D surface color
import numpy as npdata1 = np.random.rand(10, 12)
data2 = np.random.rand(10, 12)
data3 = data1 - data2
fig, (ax_1, ax_2, ax_error) = plt.subplots(nrows=3, ncols=1, figsize=(6, 6))
mesh_1 = ax_1.pcolormesh(data1.T, cmap = cm.coolwarm)
mesh_2 = ax_2.pcolormesh(data2.T, cmap = cm.coolwarm)
mesh_error = ax_error.pcolormesh(data3.T, cmap = cm.coolwarm)
fig.colorbar(mesh_2, ax=[ax_1, ax_2, ax_error], shrink=0.3)
plt.show()它会产生

发布于 2019-07-03 23:11:01
不幸的是,tight_layout对这个问题无能为力。不使用tight_layout和不使用axes_grid都可以:
from matplotlib import pyplot as plt
from matplotlib import cm # 3D surface color
import numpy as np
data1 = np.random.rand(10, 12)
data2 = np.random.rand(10, 12)
data3 = data1 - data2
fig, (ax_1, ax_2, ax_error) = plt.subplots(nrows=3, ncols=1, figsize=(6, 6))
mesh_1 = ax_1.pcolormesh(data1.T, cmap = cm.coolwarm)
mesh_2 = ax_2.pcolormesh(data2.T, cmap = cm.coolwarm)
mesh_error = ax_error.pcolormesh(data3.T, cmap = cm.coolwarm)
fig.colorbar(mesh_2, ax=[ax_1, ax_2, ax_error])
plt.show()

如果你想要更好的间距,你可以试试constrained_layout
fig, (ax_1, ax_2, ax_error) = plt.subplots(nrows=3, ncols=1, figsize=(6, 6),
constrained_layout=True)

受约束的布局也只适用于一个轴:
fig.colorbar(mesh_2, ax=ax_2)

https://stackoverflow.com/questions/56866654
复制相似问题