# import the necessary packages
import keras
from keras.initializers import glorot_uniform
from keras.layers import AveragePooling2D, Input, Add
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.core import Dropout
from keras.layers.core import Dense
class SmallerVGGNet:
@staticmethod
def build(width, height, depth, classes, finalact):
X1 = Input(shape=(height, width, depth))
# # CONV => RELU => POOL
X = Conv2D(16, (3, 3), padding="same", strides=(1, 1), name="con_layer1")(X1)
X = BatchNormalization(axis=3)(X)
X = Activation("relu")(X)
X = MaxPooling2D(pool_size=(3, 3), strides=(1, 1))(X)
X = Conv2D(32, (3, 3), padding="same", strides=(2, 2), name="con_layer2")(X)
X = BatchNormalization(axis=3)(X)
X = Activation("relu")(X)
X = Conv2D(32, (3, 3), padding="same", strides=(1, 1), name="con_layer3")(X)
X = Activation("relu")(X)
X = BatchNormalization(axis=3)(X)
X = MaxPooling2D(pool_size=(3, 3), strides=(1, 1))(X)
# First component
X0 = Conv2D(256, (5, 5), strides=(1, 1), padding='same', kernel_initializer=glorot_uniform(seed=0))(X)
X0 = BatchNormalization(axis=3)(X0)
X0 = Activation("relu")(X0)
# (CONV => RELU) * 2 => POOL
X = Conv2D(64, (3, 3), padding="same", strides=(2, 2), name="con_layer4")(X0)
X = BatchNormalization(axis=3)(X)
X = Activation("relu")(X)
X = Conv2D(64, (3, 3), padding="same", strides=(1, 1), name="con_layer5")(X)
X = BatchNormalization(axis=3)(X)
X = Activation("relu")(X)
X = AveragePooling2D(pool_size=(3, 3), strides=(1, 1))(X)
# Second Component
X0 = Conv2D(512, (5, 5), strides=(1, 1), padding='valid', kernel_initializer=glorot_uniform(seed=0))(X)
X0 = BatchNormalization(axis=3)(X0)
X0 = Activation("relu")(X0)
# (CONV => RELU) * 2 => POOL
X = Conv2D(128, (3, 3), padding="same", strides=(2, 2), name="con_layer6")(X0)
X = BatchNormalization(axis=3)(X)
X = Activation("relu")(X)
X = Conv2D(128, (3, 3), padding="same", strides=(1, 1), name="con_layer7")(X)
X = BatchNormalization(axis=3)(X)
X = Activation("relu")(X)
X = MaxPooling2D(pool_size=(3, 3), strides=(1, 1))(X)
# Third Component
X0 = Conv2D(1024, (7, 7), strides=(2, 2), padding='valid', kernel_initializer=glorot_uniform(seed=0))(X)
X0 = BatchNormalization(axis=3)(X0)
X0 = Dense(128, activation="relu")(X0)
X0 = Activation("relu")(X0)
X = Add()([X0])
X = Flatten()(X1)
X = BatchNormalization()(X)
X = Dropout(0.5)(X)
output = Dense(classes, activation=finalact)(X)
model = Model(inputs=[X1], outputs=output)
print(model.summary())
return model我想添加第三个组件最后激活函数,为此我创建了一个添加函数来添加所有的X0值。但是在添加这个的时候发生了这个错误。在添加ADD函数时会发生这种情况。
raise ValueError(‘合并层应该被称为’ValueError:应该在输入列表上调用合并层。
发布于 2021-08-24 18:25:18
Add()一般在list中取2个值。你只给了一个。
https://stackoverflow.com/questions/59964803
复制相似问题