首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >ValueError:应该在输入列表上调用合并层。Add()

ValueError:应该在输入列表上调用合并层。Add()
EN

Stack Overflow用户
提问于 2020-01-29 18:12:27
回答 1查看 531关注 0票数 0
代码语言:javascript
复制
# import the necessary packages
import keras
from keras.initializers import glorot_uniform
from keras.layers import AveragePooling2D, Input, Add
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.core import Dropout
from keras.layers.core import Dense


class SmallerVGGNet:
    @staticmethod
    def build(width, height, depth, classes, finalact):

        X1 = Input(shape=(height, width, depth))

        # # CONV => RELU => POOL
        X = Conv2D(16, (3, 3), padding="same", strides=(1, 1), name="con_layer1")(X1)
        X = BatchNormalization(axis=3)(X)
        X = Activation("relu")(X)
        X = MaxPooling2D(pool_size=(3, 3), strides=(1, 1))(X)

        X = Conv2D(32, (3, 3), padding="same", strides=(2, 2), name="con_layer2")(X)
        X = BatchNormalization(axis=3)(X)
        X = Activation("relu")(X)

        X = Conv2D(32, (3, 3), padding="same", strides=(1, 1), name="con_layer3")(X)
        X = Activation("relu")(X)
        X = BatchNormalization(axis=3)(X)

        X = MaxPooling2D(pool_size=(3, 3), strides=(1, 1))(X)

        # First component
        X0 = Conv2D(256, (5, 5), strides=(1, 1), padding='same', kernel_initializer=glorot_uniform(seed=0))(X)
        X0 = BatchNormalization(axis=3)(X0)
        X0 = Activation("relu")(X0)

        # (CONV => RELU) * 2 => POOL
        X = Conv2D(64, (3, 3), padding="same", strides=(2, 2), name="con_layer4")(X0)
        X = BatchNormalization(axis=3)(X)
        X = Activation("relu")(X)

        X = Conv2D(64, (3, 3), padding="same", strides=(1, 1), name="con_layer5")(X)
        X = BatchNormalization(axis=3)(X)
        X = Activation("relu")(X)

        X = AveragePooling2D(pool_size=(3, 3), strides=(1, 1))(X)

        # Second Component
        X0 = Conv2D(512, (5, 5), strides=(1, 1), padding='valid', kernel_initializer=glorot_uniform(seed=0))(X)
        X0 = BatchNormalization(axis=3)(X0)
        X0 = Activation("relu")(X0)

        # (CONV => RELU) * 2 => POOL
        X = Conv2D(128, (3, 3), padding="same", strides=(2, 2), name="con_layer6")(X0)
        X = BatchNormalization(axis=3)(X)
        X = Activation("relu")(X)

        X = Conv2D(128, (3, 3), padding="same", strides=(1, 1), name="con_layer7")(X)
        X = BatchNormalization(axis=3)(X)
        X = Activation("relu")(X)

        X = MaxPooling2D(pool_size=(3, 3), strides=(1, 1))(X)

        # Third Component
        X0 = Conv2D(1024, (7, 7), strides=(2, 2), padding='valid', kernel_initializer=glorot_uniform(seed=0))(X)
        X0 = BatchNormalization(axis=3)(X0)
        X0 = Dense(128, activation="relu")(X0)
        X0 = Activation("relu")(X0)

        X = Add()([X0])
        X = Flatten()(X1)
        X = BatchNormalization()(X)
        X = Dropout(0.5)(X)
        output = Dense(classes, activation=finalact)(X)

        model = Model(inputs=[X1], outputs=output)

        print(model.summary())
        return model

我想添加第三个组件最后激活函数,为此我创建了一个添加函数来添加所有的X0值。但是在添加这个的时候发生了这个错误。在添加ADD函数时会发生这种情况。

raise ValueError(‘合并层应该被称为’ValueError:应该在输入列表上调用合并层。

EN

回答 1

Stack Overflow用户

发布于 2021-08-24 18:25:18

Add()一般在list中取2个值。你只给了一个。

票数 0
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/59964803

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档