我正在尝试创建一个从网站收集信息(股票报价器数据,30个不同的报价器,与单个报价器关联的三种不同价格)的工作流程,清理数据(添加与收集信息的日期相关的日期列),将其推送到主文件tsibble
dataframe中,该文件每天保存新的数据点,然后在编译到一页上的单个绘图上绘制价格范围。
下面一天的示例df推送到master df中,保存所有数据:
df <- data.frame(ticker = c("XLU", "XLK", "XLF", "XLE", "XLP"),
buy_price = c(62.00, 68.00, 37.00, 55.00, 41.00),
sale_price = c(64.00, 71.00, 42.00, 60.00, 45.00),
close_price = c(63.00, 70.00, 38.00, 56.00, 43.00),
date = c("April 29th, 2021", "April 29th, 2021", "April 29th, 2021", "April 29th, 2021", "April 29th, 2021"))
第二天的数据:
df2 <- data.frame(ticker = c("XLU", "XLK", "XLF", "XLE", "XLP"),
buy_price = c(63.00, 69.00, 38.00, 53.00, 44.00),
sale_price = c(66.00, 77.00, 47.00, 63.00, 48.00),
close_price = c(65.00, 74.00, 39.00, 55.00, 45.00),
date = c("April 30th, 2021", "April 30th, 2021", "April 30th, 2021", "April 30th, 2021", "April 30th, 2021"))
DF主文件:rbind(df, df2)
ticker buy_price sale_price close_price date
1 XLU 62 64 63 April 29th, 2021
2 XLK 68 71 70 April 29th, 2021
3 XLF 37 42 38 April 29th, 2021
4 XLE 55 60 56 April 29th, 2021
5 XLP 41 45 43 April 29th, 2021
6 XLU 63 66 65 April 30th, 2021
7 XLK 69 77 74 April 30th, 2021
8 XLF 38 47 39 April 30th, 2021
9 XLE 53 63 55 April 30th, 2021
10 XLP 44 48 45 April 30th, 2021
我已经使用facet_wrap_paginate
按股票代码名称进行刻面,并创建了多个图形。但是,在使用facet时,我无法对轴和单个绘图进行精细控制,因此我必须使用单独绘制每个滚动条并编译到相同页面上的方法。我使用了下面的代码:
for(i in 1:4){
rr_plot <- ggplot(rr_tsibble, aes(x = DATE, color = TREND)) +
geom_point(aes(y = BUY.TRADE), size = 1.5) +
geom_point(aes(y = SELL.TRADE), size = 1.5) +
geom_point(aes(y = PREV.CLOSE), color = "black", size = 1, shape = 1) +
ggforce::facet_wrap_paginate(~TICKER,
nrow = 2,
ncol = 4,
scales = "free_y",
page = i) +
scale_y_continuous()
print(rr_plot)
来实现这一点。原始数据报有大约30个行业报价器,第二天将同样的30个报价器添加到df中,然后再添加30个。我已经尝试过使用dplyr
来group_by
和绘图,尽管我还没有达到预期的效果。我不认为用ggplot2
手动创建30个图是非常有效的,必须有一个for循环,它只允许选择特定的滚动条,然后绘制所有数据,并使用cowplot
和extraGrid
编译所有30个生成的图。任何关于如何实现这一点的帮助或想法都将是很棒的!谢谢!
发布于 2021-05-04 08:49:05
在4天内生成了一些随机数据,大约有30个随机的报价器:
r <- function() {abs(c(rnorm(29,50,2),100000)*rnorm(1,10,1))}
tickers = sapply(1:30, function(x) toupper(paste0(sample(letters, 3), collapse = "")))
df <- data.frame(ticker = tickers,
buy_price = r(),
sale_price = r(),
close_price = r(),
date = rep("April 29th, 2021",30))
df2 <- data.frame(ticker = tickers,
buy_price = r(),
sale_price = r(),
close_price = r(),
date = rep("April 30th, 2021",30))
df3 <- data.frame(ticker = tickers,
buy_price = r(),
sale_price = r(),
close_price = r(),
date = rep("May 1st, 2021",30))
df4 <- data.frame(ticker = tickers,
buy_price = r(),
sale_price = r(),
close_price = r(),
date = rep("May 2nd, 2021",30))
rr_tsibble <- rbind(df, df2, df3, df4)
已将date
转换为日期格式:
rr_tsibble$date = as.Date(gsub("st|th|nd","",rr_tsibble$date), "%b %d, %Y")
添加用于格式化大数的addUnits()
函数:
addUnits <- function(n) {
labels <- ifelse(n < 1000, n, # less than thousands
ifelse(n < 1e6, paste0(round(n/1e3,3), 'k'), # in thousands
ifelse(n < 1e9, paste0(round(n/1e6,3), 'M'), # in millions
ifelse(n < 1e12, paste0(round(n/1e9), 'B'), # in billions
ifelse(n < 1e15, paste0(round(n/1e12), 'T'), # in trillions
'too big!'
)))))}
制作绘图列表:
plotlist <- list()
for (i in 1:ceiling(30/8))
{
plotlist[[i]] <- ggplot(rr_tsibble, aes(x = date)) +
geom_point(aes(y = buy_price), size = 1.5) +
geom_point(aes(y = sale_price), size = 1.5) +
geom_point(aes(y = close_price), color = "black", size = 1, shape = 1) +
scale_y_continuous(breaks = pretty_breaks(), labels = addUnits) +
ggforce::facet_wrap_paginate(~ticker,
nrow = 2,
ncol = 4,
scales = "free_y",
page = i)
}
总共有4个页面,每个页面都存储为plotlist
列表的一个元素。例如,最后一个页面是第4个元素,如下所示:
plotlist[[4]]
https://stackoverflow.com/questions/67373354
复制相似问题