当点在指定距离内时,我想创建SpatialPointsDataFrame的所有变量的平均值。我有一个这样做的方法,但这似乎是一个愚蠢的解决问题的方法。任何使用整洁的现代语法来实现这一点的想法都将不胜感激。
首先,我有一个为每个点测量了几个变量的SpatialPointsDataFrame。我想要得到指定距离内所有变量的平均值。例如,从meuse数据中获得彼此相距100m内的点的平均镉的值:
library(sf)
library(sp)
data(meuse)
pts <- st_as_sf(meuse, coords = c("x", "y"),remove=FALSE)
pts100 <- st_is_within_distance(pts, dist = 100)
# can use sapply to get mean of a variable. E.g., cadmium
sapply(pts100, function(x){ mean(pts$cadmium[x]) })因此,我已经了解了如何使用sapply逐个变量地执行此操作。因此,如果我愿意,我可以计算每个变量的平均值,为每个点生成一个质心,然后生成唯一值的SpatialPointsDataFrame。例如,对于前几个变量:
res <- data.frame(id=1:length(pts100),
x=NA, y=NA,
cadmium=NA, copper=NA, lead=NA)
res$x <- sapply(pts100, function(p){ mean(pts$x[p]) })
res$y <- sapply(pts100, function(p){ mean(pts$y[p]) })
res$cadmium <- sapply(pts100, function(p){ mean(pts$cadmium[p]) })
res$copper <- sapply(pts100, function(p){ mean(pts$copper[p]) })
res$lead <- sapply(pts100, function(p){ mean(pts$lead[p]) })
res2 <- res[duplicated(res$cadmium),]
coordinates(res2) <- c("x","y")
bubble(res2,"cadmium")这是可行的,但看起来很麻烦,而且肯定有更有效的方法。
发布于 2020-10-11 06:32:04
看起来像是有一个用于sf包的聚合函数,该函数有一个连接参数,您可以在其中指定连接类型。
ibrary(sf)
library(sp)
data(meuse)
pts <- st_as_sf(meuse, coords = c("x", "y"),remove=FALSE)
# This will give lots of warnings since there are non-numeric columns
pts_agg <- aggregate(pts,
pts,
FUN = mean,
join = function(x, y) st_is_within_distance(x, y, dist = 100))
head(pts_agg)
Simple feature collection with 6 features and 14 fields
geometry type: POINT
dimension: XY
bbox: xmin: 181025 ymin: 333260 xmax: 181390 ymax: 333611
CRS: NA
x y cadmium copper lead zinc elev dist om ffreq soil lime landuse dist.m
1 181048.5 333584.5 10.15 83 288 1081.5 7.446 0.006791165 13.8 NA NA NA NA 40
2 181048.5 333584.5 10.15 83 288 1081.5 7.446 0.006791165 13.8 NA NA NA NA 40
3 181165.0 333537.0 6.50 68 199 640.0 7.800 0.103029000 13.0 NA NA NA NA 150
4 181298.0 333484.0 2.60 81 116 257.0 7.655 0.190094000 8.0 NA NA NA NA 270
5 181307.0 333330.0 2.80 48 117 269.0 7.480 0.277090000 8.7 NA NA NA NA 380
6 181390.0 333260.0 3.00 61 137 281.0 7.791 0.364067000 7.8 NA NA NA NA 470
geometry
1 POINT (181072 333611)
2 POINT (181025 333558)
3 POINT (181165 333537)
4 POINT (181298 333484)
5 POINT (181307 333330)
6 POINT (181390 333260)抽查pts第9行,因为它在pts100中有一些匹配:
> pts[pts100[[9]], 'cadmium'] %>% st_drop_geometry %>% summarise(mean = mean(cadmium))
mean
1 2.25
> pts_agg[9,'cadmium']
Simple feature collection with 1 feature and 1 field
geometry type: POINT
dimension: XY
bbox: xmin: 181060 ymin: 333231 xmax: 181060 ymax: 333231
CRS: NA
cadmium geometry
9 2.25 POINT (181060 333231)https://stackoverflow.com/questions/55110443
复制相似问题