我有一个数据框,它有四个列,分别是范围、天气、标志和计算。我需要从三个列(范围、天气和标志)的三个列表中获取组合,并检查这三个列的组合是否存在,然后在数据框中添加新行。
range weather flag calculation
0-5 good y 12
5-6 good n 14
0-5 bad n 2
5-6 worse y 5
输出如下:
range weather flag calculation
0-5 good y 12
0-5 bad n 2
0-5 good n null
0-5 worse n null
0-5 bad y null
0-5 worse y null
5-6 good n 14
5-6 worse y 5
5-6 bad n null
5-6 worse n null
5-6 bad y null
5-6 good y null
我尝试的代码如下:
r=['0-5','5-6']
w=['good','bad','worse']
f=['n','y']
for i in r:
for j in w:
for k in f:
if i in data1['range'].values and j in data1['weather'].values and k in data1['flag'].values:
print(i,j,k)
print("yes")
else:
print(i,j,k)
print("no")
data1=data1.append([{'bl_flag':j},{'weather_status':k}], ignore_index=True)
print(data1)
上面的代码没有检查所有3个组合是否都出现在一行中,如果没有出现在一行中,则必须将其附加到数据帧中。
发布于 2020-01-21 14:28:35
r=['0-5','5-6']
w=['good','bad','worse']
f=['n','y']
for i in r:
for j in f:
for k in w:
count=data1[data1["range"]==i].groupby(["range","weather","flag"]).apply(lambda x: x[(x["flag"]==j)&(x["weather"]==k).any()])
if count.size==0:
data1=data1.append({'flag':j,'weather':k}, ignore_index=True)
发布于 2020-01-17 17:50:03
解决此问题的一种方法是创建一个DataFrame,其中包含来自"range", "weather" and "flag"
列的所有可能的值组合,然后使用outer join
将新的DataFrame与原始DataFrame合并。
要使用所有可能的组合创建数据帧,请执行以下操作:
r=['0-5','5-6']
w=['good','bad','worse']
f=['n','y']
res = [[i, j, k] for i in r
for j in w
for k in f]
cls = ["range","weather","flag"]
df1 = pd.DataFrame(res,columns = cls)
df1
输出:
range weather flag
0 0-5 good n
1 0-5 good y
2 0-5 bad n
3 0-5 bad y
4 0-5 worse n
5 0-5 worse y
6 5-6 good n
7 5-6 good y
8 5-6 bad n
9 5-6 bad y
10 5-6 worse n
11 5-6 worse y
现在,您可以通过以下方式使用outer
join将此DataFrame与原始DataFrame合并:
new_df = pd.merge(df1, orignal_df, how='outer', left_on=cls, right_on = cls)
输出:
range weather flag calculation
0 0-5 good n NaN
1 0-5 good y NaN
2 0-5 bad n NaN
3 0-5 bad y NaN
4 0-5 worse n NaN
5 0-5 worse y NaN
6 5-6 good n NaN
7 5-6 good y NaN
8 5-6 bad n NaN
9 5-6 bad y NaN
10 5-6 worse n NaN
11 5-6 worse y NaN
12 0-5 good y 12.0
13 5-6 good n 14.0
14 0-5 bad n 2.0
15 5-6 worse y 5.0
https://stackoverflow.com/questions/59718494
复制相似问题