我想从python中的图像中提取文本。为此,我选择了pytesseract。当我尝试从图像中提取文本时,结果并不令人满意。我还查看了this并实现了下面列出的所有技术。然而,它的表现似乎并不好。
图片:

代码:
import pytesseract
import cv2
import numpy as np
img = cv2.imread('D:\\wordsimg.png')
img = cv2.resize(img, None, fx=1.2, fy=1.2, interpolation=cv2.INTER_CUBIC)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
kernel = np.ones((1,1), np.uint8)
img = cv2.dilate(img, kernel, iterations=1)
img = cv2.erode(img, kernel, iterations=1)
img = cv2.threshold(cv2.medianBlur(img, 3), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
pytesseract.pytesseract.tesseract_cmd = 'C:\\Program Files\\Tesseract-OCR\\tesseract.exe'
txt = pytesseract.image_to_string(img ,lang = 'eng')
txt = txt[:-1]
txt = txt.replace('\n',' ')
print(txt)输出:
t hose he large form might light another us should took mountai house n story important went own own thought girl over family look some much ask the under why miss point make mile grow do own school was 即使是1个不需要的空间也会让我付出很大代价。我希望结果是100%准确的。任何帮助都将不胜感激。谢谢!
发布于 2020-10-06 06:58:12
我将resize从1.2改为2,并删除了所有的预处理。我用psm 11和psm 12得到了很好的结果
import pytesseract
import cv2
import numpy as np
img = cv2.imread('wavy.png')
# img = cv2.resize(img, None, fx=1.2, fy=1.2, interpolation=cv2.INTER_CUBIC)
img = cv2.resize(img, None, fx=2, fy=2)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
kernel = np.ones((1,1), np.uint8)
# img = cv2.dilate(img, kernel, iterations=1)
# img = cv2.erode(img, kernel, iterations=1)
# img = cv2.threshold(cv2.medianBlur(img, 3), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
cv2.imwrite('thresh.png', img)
pytesseract.pytesseract.tesseract_cmd = 'C:\\Program Files (x86)\\Tesseract-OCR\\tesseract.exe'
for psm in range(6,13+1):
config = '--oem 3 --psm %d' % psm
txt = pytesseract.image_to_string(img, config = config, lang='eng')
print('psm ', psm, ':',txt)config = '--oem 3 --psm %d' % psm行使用string interpolation (%) operator将%d替换为整数(psm)。我不太确定oem是做什么的,但我已经养成了使用它的习惯。在这个答案的末尾有更多关于psm的内容。
psm 11 : those he large form might light another us should name
took mountain story important went own own thought girl
over family look some much ask the under why miss point
make mile grow do own school was
psm 12 : those he large form might light another us should name
took mountain story important went own own thought girl
over family look some much ask the under why miss point
make mile grow do own school waspsm是页面分割模式的缩写。我不太确定不同的模式是什么。您可以从描述中了解代码是什么。您可以从tesseract --help-psm获取该列表
Page segmentation modes:
0 Orientation and script detection (OSD) only.
1 Automatic page segmentation with OSD.
2 Automatic page segmentation, but no OSD, or OCR. (not implemented)
3 Fully automatic page segmentation, but no OSD. (Default)
4 Assume a single column of text of variable sizes.
5 Assume a single uniform block of vertically aligned text.
6 Assume a single uniform block of text.
7 Treat the image as a single text line.
8 Treat the image as a single word.
9 Treat the image as a single word in a circle.
10 Treat the image as a single character.
11 Sparse text. Find as much text as possible in no particular order.
12 Sparse text with OSD.
13 Raw line. Treat the image as a single text line,
bypassing hacks that are Tesseract-specific.https://stackoverflow.com/questions/64099248
复制相似问题