from keras.datasets import mnist
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.utils import np_utils
from keras.preprocessing import image
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import cv2
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape((X_train.shape[0], 28, 28, 1)).astype('float32')
X_test = X_test.reshape((X_test.shape[0], 28, 28, 1)).astype('float32')
X_train = X_train / 255
X_test = X_test / 255
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
def larger_model():
model = Sequential()
model.add(Conv2D(30, (5, 5), input_shape=(28, 28, 1), activation='relu'))
model.add(MaxPooling2D())
model.add(Conv2D(15, (3, 3), activation='relu'))
model.add(MaxPooling2D())
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
model = larger_model()
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200)
scores = model.evaluate(X_test, y_test, verbose=0)
print("Large CNN Error: %.2f%%" % (100-scores[1]*100))
model.save('good_model.h5')
print("Model saved")在运行这段代码之后,我们得到了一个'.h5‘模型,然后我给predict this image添加了这段代码:
import cv2
model = load_model('good_model.h5')
file = cv2.imread('screenshot.png')
file = cv2.resize(file, (28, 28))
file = cv2.cvtColor(file, cv2.COLOR_BGR2GRAY)
file = file.reshape((-1, 28, 28,1))
result = model.predict(file)
print(result[0])
t = (np.argmax(result[0]))
print("I predict this number is a:", t)但我总是得到相同的答案,那就是4。上面我试着用cv加载图像,并将其转换为灰色,然后重塑为输入的大小。它正确地接受输入,但无论我输入什么图像,答案总是相同的
发布于 2020-04-11 05:52:57
在预测之前,你需要对图像进行反转。一旦你反转了图像,它就会正确地预测。给定的示例是预测为"2“,但我检查了其他图像,如"7”,它是正确的预测。
file = cv2.bitwise_not(file)除了上面的,我做了一个改变。我从Tensorflow 2.x导入了模块。请查看完整的代码here。
https://stackoverflow.com/questions/61143218
复制相似问题