使用基于任务的并行在f#中使用快速排序并行化。
我不能让并行代码比顺序代码运行得更快。'quicksortParallel‘函数的深度参数采用深度参数,该参数决定在该’深度/级别‘上的递归调用是顺序运行还是并行运行。通过传递负深度,代码可以按顺序运行。顺序运行大约需要9秒来对200万个数字进行排序。现在,如果我传入一个非负的(<4)“深度”值,时间几乎保持不变,而对于“深度”值(>4),运行时间再次开始增加,这是因为并行化的成本大于并行代码的收益。
我不明白的是,为什么我看不到深度参数值0到4的性能提升?我在一个16逻辑核心的英特尔i9处理器上运行它。我如何将其并行化?
open System
open System.Threading.Tasks
module myMod =
let genRandomNums count =
let rnd = System.Random()
List.init count (fun _ -> rnd.Next())
let rec quicksortParallel depth aList =
match aList with
| [] -> []
| firstElement :: restOfList ->
let smaller, larger =
List.partition (fun number -> number < firstElement) restOfList
if depth < 0 then
let left = quicksortParallel depth smaller
let right = quicksortParallel depth larger
left @ (firstElement :: right)
else
let left = Task.Run(fun () -> quicksortParallel (depth-1) smaller)
let right = Task.Run(fun () -> quicksortParallel (depth-1) larger)
Task.WaitAll(left, right)
left.Result @ (firstElement :: right.Result)
let sampleNumbers = genRandomNums 2000000
let stopWatch = System.Diagnostics.Stopwatch.StartNew()
//let sortedSnums = quicksortParallel -1 sampleNumbers //this runs the quicksort sequentially
let sortedSnums = quicksortParallel 4 sampleNumbers
stopWatch.Stop()
printfn "time taken %A millseconds\n" stopWatch.Elapsed.TotalMilliseconds
printfn "time taken %A seconds\n" stopWatch.Elapsed.TotalSeconds
printfn "time taken %A minutes\n" stopWatch.Elapsed.TotalMinutes
printfn "time taken %A hours\n" stopWatch.Elapsed.TotalHours
C#中的等效代码(没有就地分区)在并行化时运行速度更快:
class Program
{
static List<int> genRandomNums(int count)
{
var rnd = new System.Random();
IEnumerable<int> enumerable = Enumerable.Range(0, count)
.Select(i => new Tuple<int, int>(rnd.Next(int.MaxValue), i))
//.OrderBy(i => i.Item1)
.Select(i => i.Item1);
return enumerable.ToList();
}
static List<T> QuickSort<T>(List<T> values, int depth)
where T : IComparable
{
if (values.Count == 0)
{
return new List<T>();
}
//get the first element
T firstElement = values[0];
//get the smaller and larger elements
var smallerElements = new List<T>();
var largerElements = new List<T>();
for (int i = 1; i < values.Count; i++) // i starts at 1
{ // not 0!
var elem = values[i];
if (elem.CompareTo(firstElement) < 0)
{
smallerElements.Add(elem);
}
else
{
largerElements.Add(elem);
}
}
//return the result
var result = new List<T>();
if (depth < 0)
{
List<T> smallList = QuickSort(smallerElements.ToList(), depth);
result.AddRange(smallList);
result.Add(firstElement);
List<T> bigList = QuickSort(largerElements.ToList(), depth);
result.AddRange(bigList);
return result;
}
else
{
Task<List<T>> smallTask = Task.Run(() => { return QuickSort(smallerElements.ToList(), depth - 1); });
Task<List<T>> bigTask = Task.Run(() => { return QuickSort(largerElements.ToList(), depth - 1); });
List<Task<List<T>>> tasks = new List<Task<List<T>>>();
tasks.Add(smallTask);
tasks.Add(bigTask);
Task.WaitAll(tasks.ToArray());
List<T> smallList = smallTask.Result;
result.AddRange(smallList);
result.Add(firstElement);
List<T> bigList = bigTask.Result;
result.AddRange(bigList);
return result;
}
}
static void Main(string[] args)
{
var sampleNumbers = genRandomNums(50000000);
int depth = 4;//set it to a negative value to run serially
var stopWatch = System.Diagnostics.Stopwatch.StartNew();
List<int> sortedList = QuickSort<int>(sampleNumbers, depth);
stopWatch.Stop();
Console.WriteLine("time taken {0} seconds\n", stopWatch.Elapsed.TotalSeconds);
Console.WriteLine("time taken {0} minutes\n", stopWatch.Elapsed.TotalMinutes);
}
}
在F#中使用就地排序/分区的快速排序的正确实现在任务并行化时确实运行得更快。
module myMod =
let genRandomNums_arr count =
let rnd = System.Random()
Array.init count (fun _ -> rnd.Next(System.Int32.MaxValue))
let swap (aArray: int array) indexA indexB =
let temp = aArray.[indexA]
Array.set aArray indexA (aArray.[indexB])
Array.set aArray indexB (temp)
let partition (aArray: int array) first last =
let pivot = aArray.[last]
let mutable wallindex = first;
let mutable currentindex = first
while currentindex < last do
if aArray.[currentindex] < pivot then
swap aArray wallindex currentindex
wallindex <- wallindex + 1
currentindex <- currentindex + 1
swap aArray wallindex last
wallindex
let rec quicksortParallelInPlace (aArray: int array) first last depth =
if ((last - first) >= 1) then
let pivotposition = partition aArray first last
if depth < 0 then
quicksortParallelInPlace aArray first (pivotposition - 1) depth
quicksortParallelInPlace aArray (pivotposition + 1) last depth
else
let left = Task.Run(fun () -> quicksortParallelInPlace aArray first (pivotposition - 1) (depth-1))
let right = Task.Run(fun () -> quicksortParallelInPlace aArray (pivotposition + 1) last (depth-1))
Task.WaitAll(left, right)
let quickSortInPlace (aArray: int array) depth =
quicksortParallelInPlace aArray 0 (aArray.Length - 1) depth
let sampleNumbers_arr = genRandomNums_arr 50000000
//printfn "un-sorted list %A" sampleNumbers_arr
let stopWatch1 = System.Diagnostics.Stopwatch.StartNew()
//let sortedSnums = quicksortParallel -1 sampleNumbers //this runs the quicksort sequentially
quickSortInPlace sampleNumbers_arr 4 //run serially using a negative number
stopWatch1.Stop()
//printfn "un-sorted list %A" sampleNumbers_arr
printfn "time taken %A millseconds\n" stopWatch1.Elapsed.TotalMilliseconds
printfn "time taken %A seconds\n" stopWatch1.Elapsed.TotalSeconds
printfn "time taken %A minutes\n" stopWatch1.Elapsed.TotalMinutes
printfn "time taken %A hours\n" stopWatch1.Elapsed.TotalHours
发布于 2020-09-01 17:13:52
我怀疑低性能的罪魁祸首实际上是List.partition
。参见this。计算分区的索引并使用它们可能比复制分区更好。
https://stackoverflow.com/questions/63626696
复制相似问题