首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >f#中的并行快速排序

f#中的并行快速排序
EN

Stack Overflow用户
提问于 2020-08-28 10:39:41
回答 1查看 225关注 0票数 4

使用基于任务的并行在f#中使用快速排序并行化。

我不能让并行代码比顺序代码运行得更快。'quicksortParallel‘函数的深度参数采用深度参数,该参数决定在该’深度/级别‘上的递归调用是顺序运行还是并行运行。通过传递负深度,代码可以按顺序运行。顺序运行大约需要9秒来对200万个数字进行排序。现在,如果我传入一个非负的(<4)“深度”值,时间几乎保持不变,而对于“深度”值(>4),运行时间再次开始增加,这是因为并行化的成本大于并行代码的收益。

我不明白的是,为什么我看不到深度参数值0到4的性能提升?我在一个16逻辑核心的英特尔i9处理器上运行它。我如何将其并行化?

代码语言:javascript
运行
复制
open System
open System.Threading.Tasks
module myMod =
    let genRandomNums count =
        let rnd = System.Random()
        List.init count (fun _ -> rnd.Next())

    let rec quicksortParallel depth aList =
        match aList with
        | [] -> []
        | firstElement :: restOfList ->
            let smaller, larger =
                List.partition (fun number -> number < firstElement) restOfList
            if depth < 0 then
                let left  = quicksortParallel depth smaller
                let right = quicksortParallel depth larger
                left @ (firstElement :: right)
            else
                let left  = Task.Run(fun () -> quicksortParallel (depth-1) smaller)
                let right = Task.Run(fun () -> quicksortParallel (depth-1) larger)
                Task.WaitAll(left, right)
                left.Result @ (firstElement :: right.Result)
    
    let sampleNumbers = genRandomNums 2000000
    
    let stopWatch = System.Diagnostics.Stopwatch.StartNew()
    //let sortedSnums = quicksortParallel -1 sampleNumbers //this runs the quicksort sequentially
    let sortedSnums = quicksortParallel 4 sampleNumbers
    stopWatch.Stop()

    printfn "time taken %A millseconds\n" stopWatch.Elapsed.TotalMilliseconds
    printfn "time taken %A seconds\n" stopWatch.Elapsed.TotalSeconds
    printfn "time taken %A minutes\n" stopWatch.Elapsed.TotalMinutes
    printfn "time taken %A hours\n" stopWatch.Elapsed.TotalHours

C#中的等效代码(没有就地分区)在并行化时运行速度更快:

代码语言:javascript
运行
复制
class Program
    {
        static List<int> genRandomNums(int count)
        {
            var rnd = new System.Random();
            IEnumerable<int> enumerable = Enumerable.Range(0, count)
                .Select(i => new Tuple<int, int>(rnd.Next(int.MaxValue), i))
                                     //.OrderBy(i => i.Item1)
                                     .Select(i => i.Item1);
            return enumerable.ToList();
        }

        static List<T> QuickSort<T>(List<T> values, int depth)
           where T : IComparable
        {
            if (values.Count == 0)
            {
                return new List<T>();
            }

            //get the first element       
            T firstElement = values[0];

            //get the smaller and larger elements       
            var smallerElements = new List<T>();
            var largerElements = new List<T>();
            for (int i = 1; i < values.Count; i++)  // i starts at 1       
            {                                       // not 0!          
                var elem = values[i];
                if (elem.CompareTo(firstElement) < 0)
                {
                    smallerElements.Add(elem);
                }
                else
                {
                    largerElements.Add(elem);
                }
            }

            //return the result       
            var result = new List<T>();
            if (depth < 0)
            {
                List<T> smallList = QuickSort(smallerElements.ToList(), depth);
                result.AddRange(smallList);
                result.Add(firstElement);
                List<T> bigList = QuickSort(largerElements.ToList(), depth);
                result.AddRange(bigList);
                return result;
            }
            else
            {
                Task<List<T>> smallTask = Task.Run(() => { return QuickSort(smallerElements.ToList(), depth - 1); });
                Task<List<T>> bigTask = Task.Run(() => { return QuickSort(largerElements.ToList(), depth - 1); });


                List<Task<List<T>>> tasks = new List<Task<List<T>>>();
                tasks.Add(smallTask);
                tasks.Add(bigTask);
                Task.WaitAll(tasks.ToArray());

                List<T> smallList = smallTask.Result;
                result.AddRange(smallList);

                result.Add(firstElement);

                List<T> bigList = bigTask.Result;
                result.AddRange(bigList);
                return result;
            }
        }

        static void Main(string[] args)
        {
            var sampleNumbers = genRandomNums(50000000);

            int depth = 4;//set it to a negative value to run serially
            var stopWatch = System.Diagnostics.Stopwatch.StartNew();
            List<int> sortedList = QuickSort<int>(sampleNumbers, depth);
            stopWatch.Stop();

            Console.WriteLine("time taken {0} seconds\n", stopWatch.Elapsed.TotalSeconds);
            Console.WriteLine("time taken {0} minutes\n", stopWatch.Elapsed.TotalMinutes);
        }
    }

在F#中使用就地排序/分区的快速排序的正确实现在任务并行化时确实运行得更快。

代码语言:javascript
运行
复制
module myMod =
    
    let genRandomNums_arr count =
        let rnd = System.Random()
        Array.init count (fun _ -> rnd.Next(System.Int32.MaxValue))
    
    let swap (aArray: int array) indexA indexB = 
        let temp = aArray.[indexA]
        Array.set aArray indexA (aArray.[indexB])
        Array.set aArray indexB (temp)

    let partition (aArray: int array) first last =
        let pivot = aArray.[last]
        let mutable wallindex = first;
        let mutable currentindex = first
        while currentindex < last do  
            if aArray.[currentindex] < pivot then
                swap aArray wallindex currentindex
                wallindex <- wallindex + 1

            currentindex <- currentindex + 1    

        swap aArray wallindex last
        wallindex

    let rec quicksortParallelInPlace (aArray: int array) first last depth =
        if ((last - first) >= 1) then
            let pivotposition = partition aArray first last
            if depth < 0 then
                quicksortParallelInPlace aArray first (pivotposition - 1) depth
                quicksortParallelInPlace aArray (pivotposition + 1) last depth
            else
                let left  = Task.Run(fun () -> quicksortParallelInPlace aArray first (pivotposition - 1) (depth-1))
                let right = Task.Run(fun () -> quicksortParallelInPlace aArray (pivotposition + 1) last (depth-1))
                Task.WaitAll(left, right)
                        

    let quickSortInPlace (aArray: int array) depth =
        quicksortParallelInPlace aArray 0 (aArray.Length - 1) depth

    let sampleNumbers_arr = genRandomNums_arr 50000000    
    //printfn "un-sorted list %A" sampleNumbers_arr 

    let stopWatch1 = System.Diagnostics.Stopwatch.StartNew()
    //let sortedSnums = quicksortParallel -1 sampleNumbers //this runs the quicksort sequentially
    quickSortInPlace sampleNumbers_arr 4 //run serially using a negative number
    stopWatch1.Stop()

    //printfn "un-sorted list %A" sampleNumbers_arr

    printfn "time taken %A millseconds\n" stopWatch1.Elapsed.TotalMilliseconds
    printfn "time taken %A seconds\n" stopWatch1.Elapsed.TotalSeconds
    printfn "time taken %A minutes\n" stopWatch1.Elapsed.TotalMinutes
    printfn "time taken %A hours\n" stopWatch1.Elapsed.TotalHours        
EN

回答 1

Stack Overflow用户

发布于 2020-09-01 17:13:52

我怀疑低性能的罪魁祸首实际上是List.partition。参见this。计算分区的索引并使用它们可能比复制分区更好。

票数 2
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/63626696

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档