首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >为什么写内存要比读内存慢得多?

为什么写内存要比读内存慢得多?
EN

Stack Overflow用户
提问于 2014-09-14 04:32:06
回答 7查看 11K关注 0票数 51

下面是一个简单的memset带宽基准:

代码语言:javascript
运行
复制
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

int main()
{
    unsigned long n, r, i;
    unsigned char *p;
    clock_t c0, c1;
    double elapsed;

    n = 1000 * 1000 * 1000; /* GB */
    r = 100; /* repeat */

    p = calloc(n, 1);

    c0 = clock();

    for(i = 0; i < r; ++i) {
        memset(p, (int)i, n);
        printf("%4d/%4ld\r", p[0], r); /* "use" the result */
        fflush(stdout);
    }

    c1 = clock();

    elapsed = (c1 - c0) / (double)CLOCKS_PER_SEC;

    printf("Bandwidth = %6.3f GB/s (Giga = 10^9)\n", (double)n * r / elapsed / 1e9);

    free(p);
}

在我的具有单个DDR3-1600内存模块的系统上(详细信息如下),它输出:

带宽= 4.751 GB/s (千兆= 10^9)

这是理论内存速度的37%:1.6 GHz * 8 bytes = 12.8 GB/s

另一方面,这里有一个类似的“读”测试:

代码语言:javascript
运行
复制
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

unsigned long do_xor(const unsigned long* p, unsigned long n)
{
    unsigned long i, x = 0;

    for(i = 0; i < n; ++i)
        x ^= p[i];
    return x;
}

int main()
{
    unsigned long n, r, i;
    unsigned long *p;
    clock_t c0, c1;
    double elapsed;

    n = 1000 * 1000 * 1000; /* GB */
    r = 100; /* repeat */

    p = calloc(n/sizeof(unsigned long), sizeof(unsigned long));

    c0 = clock();

    for(i = 0; i < r; ++i) {
        p[0] = do_xor(p, n / sizeof(unsigned long)); /* "use" the result */
        printf("%4ld/%4ld\r", i, r);
        fflush(stdout);
    }

    c1 = clock();

    elapsed = (c1 - c0) / (double)CLOCKS_PER_SEC;

    printf("Bandwidth = %6.3f GB/s (Giga = 10^9)\n", (double)n * r / elapsed / 1e9);

    free(p);
}

它输出:

带宽= 11.516 GB/s (千兆= 10^9)

我可以接近读取性能的理论极限,例如XORing一个大型数组,但写入速度似乎要慢得多。为什么?

OS Ubuntu14.04 AMD64 (我用gcc -O3编译。使用-O3 -march=native会使读取性能略有下降,但不会影响memset)

Xeon E5-2630 v2

内存内存单个“16 it PC3-12800奇偶校验寄存器CL11 240PIN内存”(包装盒上的内容)我认为,拥有单个内存可以使性能更可预测。我假设有了4个DIMM,memset的速度将提高4倍。

主板 Supermicro X9DRG-QF (支持4通道内存)

附加系统:配备2个4 GB DDR3-1067RAM的笔记本电脑:读取和写入速度都约为5.5 GB/秒,但请注意,它使用2个DIMM。

P.S.用此版本替换memset会产生完全相同的性能

代码语言:javascript
运行
复制
void *my_memset(void *s, int c, size_t n)
{
    unsigned long i = 0;
    for(i = 0; i < n; ++i)
        ((char*)s)[i] = (char)c;
    return s;
}
EN

回答 7

Stack Overflow用户

回答已采纳

发布于 2014-09-15 00:00:56

有了你的程序,我得到了

代码语言:javascript
运行
复制
(write) Bandwidth =  6.076 GB/s
(read)  Bandwidth = 10.916 GB/s

在具有6个2 2GB的台式机(核心i7,x86-64,GCC 4.9,GNU libc 2.19)上。(对不起,我手头上没有更多的细节。)

但是,此程序报告12.209 GB/s的写入带宽

代码语言:javascript
运行
复制
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <emmintrin.h>

static void
nt_memset(char *buf, unsigned char val, size_t n)
{
    /* this will only work with aligned address and size */
    assert((uintptr_t)buf % sizeof(__m128i) == 0);
    assert(n % sizeof(__m128i) == 0);

    __m128i xval = _mm_set_epi8(val, val, val, val,
                                val, val, val, val,
                                val, val, val, val,
                                val, val, val, val);

    for (__m128i *p = (__m128i*)buf; p < (__m128i*)(buf + n); p++)
        _mm_stream_si128(p, xval);
    _mm_sfence();
}

/* same main() as your write test, except calling nt_memset instead of memset */

神奇之处在于_mm_stream_si128,也就是机器指令movntdq,它绕过缓存将16字节数写入系统内存(官方术语是"non-temporal store")。我认为这很有说服力地证明了性能差异完全与缓存行为有关。

N.b.glibc2.19确实有一个使用向量指令的精心手工优化的memset。但是,它不使用非时态存储。这对于memset来说可能是正确的;通常,您在使用它之前不久就清除了内存,所以您希望它在缓存中是热的。(我认为更聪明的memset可能会切换到非临时存储,以清除非常大的块,理论上您不可能希望所有这些块都放在缓存中,因为缓存根本没有那么大。)

代码语言:javascript
运行
复制
Dump of assembler code for function memset:
=> 0x00007ffff7ab9420 <+0>:     movd   %esi,%xmm8
   0x00007ffff7ab9425 <+5>:     mov    %rdi,%rax
   0x00007ffff7ab9428 <+8>:     punpcklbw %xmm8,%xmm8
   0x00007ffff7ab942d <+13>:    punpcklwd %xmm8,%xmm8
   0x00007ffff7ab9432 <+18>:    pshufd $0x0,%xmm8,%xmm8
   0x00007ffff7ab9438 <+24>:    cmp    $0x40,%rdx
   0x00007ffff7ab943c <+28>:    ja     0x7ffff7ab9470 <memset+80>
   0x00007ffff7ab943e <+30>:    cmp    $0x10,%rdx
   0x00007ffff7ab9442 <+34>:    jbe    0x7ffff7ab94e2 <memset+194>
   0x00007ffff7ab9448 <+40>:    cmp    $0x20,%rdx
   0x00007ffff7ab944c <+44>:    movdqu %xmm8,(%rdi)
   0x00007ffff7ab9451 <+49>:    movdqu %xmm8,-0x10(%rdi,%rdx,1)
   0x00007ffff7ab9458 <+56>:    ja     0x7ffff7ab9460 <memset+64>
   0x00007ffff7ab945a <+58>:    repz retq 
   0x00007ffff7ab945c <+60>:    nopl   0x0(%rax)
   0x00007ffff7ab9460 <+64>:    movdqu %xmm8,0x10(%rdi)
   0x00007ffff7ab9466 <+70>:    movdqu %xmm8,-0x20(%rdi,%rdx,1)
   0x00007ffff7ab946d <+77>:    retq   
   0x00007ffff7ab946e <+78>:    xchg   %ax,%ax
   0x00007ffff7ab9470 <+80>:    lea    0x40(%rdi),%rcx
   0x00007ffff7ab9474 <+84>:    movdqu %xmm8,(%rdi)
   0x00007ffff7ab9479 <+89>:    and    $0xffffffffffffffc0,%rcx
   0x00007ffff7ab947d <+93>:    movdqu %xmm8,-0x10(%rdi,%rdx,1)
   0x00007ffff7ab9484 <+100>:   movdqu %xmm8,0x10(%rdi)
   0x00007ffff7ab948a <+106>:   movdqu %xmm8,-0x20(%rdi,%rdx,1)
   0x00007ffff7ab9491 <+113>:   movdqu %xmm8,0x20(%rdi)
   0x00007ffff7ab9497 <+119>:   movdqu %xmm8,-0x30(%rdi,%rdx,1)
   0x00007ffff7ab949e <+126>:   movdqu %xmm8,0x30(%rdi)
   0x00007ffff7ab94a4 <+132>:   movdqu %xmm8,-0x40(%rdi,%rdx,1)
   0x00007ffff7ab94ab <+139>:   add    %rdi,%rdx
   0x00007ffff7ab94ae <+142>:   and    $0xffffffffffffffc0,%rdx
   0x00007ffff7ab94b2 <+146>:   cmp    %rdx,%rcx
   0x00007ffff7ab94b5 <+149>:   je     0x7ffff7ab945a <memset+58>
   0x00007ffff7ab94b7 <+151>:   nopw   0x0(%rax,%rax,1)
   0x00007ffff7ab94c0 <+160>:   movdqa %xmm8,(%rcx)
   0x00007ffff7ab94c5 <+165>:   movdqa %xmm8,0x10(%rcx)
   0x00007ffff7ab94cb <+171>:   movdqa %xmm8,0x20(%rcx)
   0x00007ffff7ab94d1 <+177>:   movdqa %xmm8,0x30(%rcx)
   0x00007ffff7ab94d7 <+183>:   add    $0x40,%rcx
   0x00007ffff7ab94db <+187>:   cmp    %rcx,%rdx
   0x00007ffff7ab94de <+190>:   jne    0x7ffff7ab94c0 <memset+160>
   0x00007ffff7ab94e0 <+192>:   repz retq 
   0x00007ffff7ab94e2 <+194>:   movq   %xmm8,%rcx
   0x00007ffff7ab94e7 <+199>:   test   $0x18,%dl
   0x00007ffff7ab94ea <+202>:   jne    0x7ffff7ab950e <memset+238>
   0x00007ffff7ab94ec <+204>:   test   $0x4,%dl
   0x00007ffff7ab94ef <+207>:   jne    0x7ffff7ab9507 <memset+231>
   0x00007ffff7ab94f1 <+209>:   test   $0x1,%dl
   0x00007ffff7ab94f4 <+212>:   je     0x7ffff7ab94f8 <memset+216>
   0x00007ffff7ab94f6 <+214>:   mov    %cl,(%rdi)
   0x00007ffff7ab94f8 <+216>:   test   $0x2,%dl
   0x00007ffff7ab94fb <+219>:   je     0x7ffff7ab945a <memset+58>
   0x00007ffff7ab9501 <+225>:   mov    %cx,-0x2(%rax,%rdx,1)
   0x00007ffff7ab9506 <+230>:   retq   
   0x00007ffff7ab9507 <+231>:   mov    %ecx,(%rdi)
   0x00007ffff7ab9509 <+233>:   mov    %ecx,-0x4(%rdi,%rdx,1)
   0x00007ffff7ab950d <+237>:   retq   
   0x00007ffff7ab950e <+238>:   mov    %rcx,(%rdi)
   0x00007ffff7ab9511 <+241>:   mov    %rcx,-0x8(%rdi,%rdx,1)
   0x00007ffff7ab9516 <+246>:   retq   

(这是在libc.so.6中,而不是程序本身--另一个试图将程序集转储为memset的人似乎只找到了它的PLT条目。在Unixy系统上获取实际memset的程序集转储的最简单方法是

代码语言:javascript
运行
复制
$ gdb ./a.out
(gdb) set env LD_BIND_NOW t
(gdb) b main
Breakpoint 1 at [address]
(gdb) r
Breakpoint 1, [address] in main ()
(gdb) disas memset
...

。)

票数 47
EN

Stack Overflow用户

发布于 2014-09-14 09:22:32

性能的主要差异来自于您的PC/内存区域的缓存策略。当您从内存中读取数据而数据不在缓存中时,必须先通过内存总线将内存提取到缓存中,然后才能对数据执行任何计算。但是,当您写入内存时,有不同的写入策略。您的系统最有可能使用的是回写式缓存(或者更准确地说是“写分配”),这意味着当您写入不在缓存中的内存位置时,数据首先从内存中提取到缓存中,并最终在数据从缓存中清除时写回内存,这意味着数据的往返和写入时2倍的总线带宽使用。还有直写式缓存策略(或“无写分配”),这通常意味着在写入时缓存未命中时,不会将数据提取到缓存中,这应该会为读取和写入提供更接近相同的性能。

票数 29
EN

Stack Overflow用户

发布于 2014-09-14 09:53:20

不同之处在于--至少在我的机器上,使用AMD处理器--读取程序使用的是矢量化操作。对这两个文件进行反编译将为编写程序生成以下代码:

代码语言:javascript
运行
复制
0000000000400610 <main>:
  ...
  400628:       e8 73 ff ff ff          callq  4005a0 <clock@plt>
  40062d:       49 89 c4                mov    %rax,%r12
  400630:       89 de                   mov    %ebx,%esi
  400632:       ba 00 ca 9a 3b          mov    $0x3b9aca00,%edx
  400637:       48 89 ef                mov    %rbp,%rdi
  40063a:       e8 71 ff ff ff          callq  4005b0 <memset@plt>
  40063f:       0f b6 55 00             movzbl 0x0(%rbp),%edx
  400643:       b9 64 00 00 00          mov    $0x64,%ecx
  400648:       be 34 08 40 00          mov    $0x400834,%esi
  40064d:       bf 01 00 00 00          mov    $0x1,%edi
  400652:       31 c0                   xor    %eax,%eax
  400654:       48 83 c3 01             add    $0x1,%rbx
  400658:       e8 a3 ff ff ff          callq  400600 <__printf_chk@plt>

但这是阅读程序的代码:

代码语言:javascript
运行
复制
00000000004005d0 <main>:
  ....
  400609:       e8 62 ff ff ff          callq  400570 <clock@plt>
  40060e:       49 d1 ee                shr    %r14
  400611:       48 89 44 24 18          mov    %rax,0x18(%rsp)
  400616:       4b 8d 04 e7             lea    (%r15,%r12,8),%rax
  40061a:       4b 8d 1c 36             lea    (%r14,%r14,1),%rbx
  40061e:       48 89 44 24 10          mov    %rax,0x10(%rsp)
  400623:       0f 1f 44 00 00          nopl   0x0(%rax,%rax,1)
  400628:       4d 85 e4                test   %r12,%r12
  40062b:       0f 84 df 00 00 00       je     400710 <main+0x140>
  400631:       49 8b 17                mov    (%r15),%rdx
  400634:       bf 01 00 00 00          mov    $0x1,%edi
  400639:       48 8b 74 24 10          mov    0x10(%rsp),%rsi
  40063e:       66 0f ef c0             pxor   %xmm0,%xmm0
  400642:       31 c9                   xor    %ecx,%ecx
  400644:       0f 1f 40 00             nopl   0x0(%rax)
  400648:       48 83 c1 01             add    $0x1,%rcx
  40064c:       66 0f ef 06             pxor   (%rsi),%xmm0
  400650:       48 83 c6 10             add    $0x10,%rsi
  400654:       49 39 ce                cmp    %rcx,%r14
  400657:       77 ef                   ja     400648 <main+0x78>
  400659:       66 0f 6f d0             movdqa %xmm0,%xmm2 ;!!!! vectorized magic
  40065d:       48 01 df                add    %rbx,%rdi
  400660:       66 0f 73 da 08          psrldq $0x8,%xmm2
  400665:       66 0f ef c2             pxor   %xmm2,%xmm0
  400669:       66 0f 7f 04 24          movdqa %xmm0,(%rsp)
  40066e:       48 8b 04 24             mov    (%rsp),%rax
  400672:       48 31 d0                xor    %rdx,%rax
  400675:       48 39 dd                cmp    %rbx,%rbp
  400678:       74 04                   je     40067e <main+0xae>
  40067a:       49 33 04 ff             xor    (%r15,%rdi,8),%rax
  40067e:       4c 89 ea                mov    %r13,%rdx
  400681:       49 89 07                mov    %rax,(%r15)
  400684:       b9 64 00 00 00          mov    $0x64,%ecx
  400689:       be 04 0a 40 00          mov    $0x400a04,%esi
  400695:       e8 26 ff ff ff          callq  4005c0 <__printf_chk@plt>
  40068e:       bf 01 00 00 00          mov    $0x1,%edi
  400693:       31 c0                   xor    %eax,%eax

另外,请注意,您的“自主开发”memset实际上已经过优化,只需调用memset即可

代码语言:javascript
运行
复制
00000000004007b0 <my_memset>:
  4007b0:       48 85 d2                test   %rdx,%rdx
  4007b3:       74 1b                   je     4007d0 <my_memset+0x20>
  4007b5:       48 83 ec 08             sub    $0x8,%rsp
  4007b9:       40 0f be f6             movsbl %sil,%esi
  4007bd:       e8 ee fd ff ff          callq  4005b0 <memset@plt>
  4007c2:       48 83 c4 08             add    $0x8,%rsp
  4007c6:       c3                      retq   
  4007c7:       66 0f 1f 84 00 00 00    nopw   0x0(%rax,%rax,1)
  4007ce:       00 00 
  4007d0:       48 89 f8                mov    %rdi,%rax
  4007d3:       c3                      retq   
  4007d4:       66 2e 0f 1f 84 00 00    nopw   %cs:0x0(%rax,%rax,1)
  4007db:       00 00 00 
  4007de:       66 90                   xchg   %ax,%ax

我找不到任何关于memset是否使用矢量化操作的参考资料,memset@plt的反汇编在这里没有帮助:

代码语言:javascript
运行
复制
00000000004005b0 <memset@plt>:
  4005b0:       ff 25 72 0a 20 00       jmpq   *0x200a72(%rip)        # 601028 <_GLOBAL_OFFSET_TABLE_+0x28>
  4005b6:       68 02 00 00 00          pushq  $0x2
  4005bb:       e9 c0 ff ff ff          jmpq   400580 <_init+0x20>

This question建议,由于memset是为处理所有情况而设计的,因此它可能会缺少一些优化。

This guy似乎确信,您需要使用自己的汇编程序memset才能利用SIMD指令。This question does, too

我将在黑暗中尝试一下,并猜测它没有使用SIMD操作,因为它不能确定它是否将在某个向量化操作的倍数上进行操作,或者存在一些与对齐相关的问题。

但是,我们可以通过检查cachegrind来确认这不是缓存效率问题。write程序产生以下内容:

代码语言:javascript
运行
复制
==19593== D   refs:       6,312,618,768  (80,386 rd   + 6,312,538,382 wr)
==19593== D1  misses:     1,578,132,439  ( 5,350 rd   + 1,578,127,089 wr)
==19593== LLd misses:     1,578,131,849  ( 4,806 rd   + 1,578,127,043 wr)
==19593== D1  miss rate:           24.9% (   6.6%     +          24.9%  )
==19593== LLd miss rate:           24.9% (   5.9%     +          24.9%  )
==19593== 
==19593== LL refs:        1,578,133,467  ( 6,378 rd   + 1,578,127,089 wr)
==19593== LL misses:      1,578,132,871  ( 5,828 rd   + 1,578,127,043 wr) << 
==19593== LL miss rate:             9.0% (   0.0%     +          24.9%  )

并且读取程序产生:

代码语言:javascript
运行
复制
==19682== D   refs:       6,312,618,618  (6,250,080,336 rd   + 62,538,282 wr)
==19682== D1  misses:     1,578,132,331  (1,562,505,046 rd   + 15,627,285 wr)
==19682== LLd misses:     1,578,131,740  (1,562,504,500 rd   + 15,627,240 wr)
==19682== D1  miss rate:           24.9% (         24.9%     +       24.9%  )
==19682== LLd miss rate:           24.9% (         24.9%     +       24.9%  )
==19682== 
==19682== LL refs:        1,578,133,357  (1,562,506,072 rd   + 15,627,285 wr)
==19682== LL misses:      1,578,132,760  (1,562,505,520 rd   + 15,627,240 wr) <<
==19682== LL miss rate:             4.1% (          4.1%     +       24.9%  )

虽然读取程序具有较低的LL未命中率,因为它执行了更多的读取(每个XOR操作一个额外的读取),但未命中的总数是相同的。因此,无论问题是什么,它都不存在。

票数 16
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/25827416

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档