我正在尝试可视化图形神经网络的计算图,我用它来预测分子的性质。该模型是在PyTorch中建立的,并以动态链接库图形作为输入。尝试可视化模型的代码片段如下所示:
train_log_dir = f'logs/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}/train'
train_summary_writer = tensorboardX.SummaryWriter(train_log_dir)
train_summary_writer.add_graph(model, [transformer(dataset[0][0]), transformer(dataset[0][0])])我遇到了以下错误,TensorBoardX无法可视化图形模型,拒绝接受DGL图形作为输入,只需要张量。有没有什么方法可以使模型可视化?
RuntimeError: Tracer cannot infer type of (Graph(num_nodes=3, num_edges=4,
ndata_schemes={'x': Scheme(shape=(10,), dtype=torch.float32)}
edata_schemes={'w': Scheme(shape=(4,), dtype=torch.float32)}), Graph(num_nodes=3, num_edges=4,
ndata_schemes={'x': Scheme(shape=(10,), dtype=torch.float32)}
edata_schemes={'w': Scheme(shape=(4,), dtype=torch.float32)}))
:Only tensors and (possibly nested) tuples of tensors, lists, or dictsare supported as inputs or outputs of traced functions, but instead got value of type DGLHeteroGraph.
Process finished with exit code 1发布于 2021-08-24 12:23:00
我通常使用torch库中的SummaryWriter。它的工作原理如下:
...
from torch.utils.tensorboard import SummaryWriter
...
# initializing your model
model = ...
dummy_input = ...
...
writer = SummaryWriter(f'logs/net')
writer.add_graph(model, dummy_input)然后在终端运行您的python脚本后:
tensorboard --logdir logs然后抛出类似localhost:6006的链接,就会得到可视化的图形模型。有关更多信息,请访问:https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html
https://stackoverflow.com/questions/68903982
复制相似问题