首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >创建(正常)平均值和标准差的两层估计

创建(正常)平均值和标准差的两层估计
EN

Stack Overflow用户
提问于 2021-05-03 21:06:32
回答 1查看 129关注 0票数 1

我有一个正态分布的变量x(如产品需求),一个索引id_1 (如产品编号)和第二个索引id_2 (如产品组)。我的目标是按层次估计x的平均值和标准差(全部>产品组>产品)。这是我的数据:

代码语言:javascript
运行
复制
import numpy as np
import pymc3 as pm
import arviz as az

# data
my_step_1 = 0.4
my_step_2 = 4.1
sd_step_1 = 0.1
sd_step_2 = 0.2
my = 10
sd = .1
grp_n = 8
grps_1 = 5
grps_2 = 4

x = np.round(np.concatenate([np.random.normal(my + i * my_step_1 + j * my_step_2, \
                      sd + i * sd_step_1 + j * sd_step_2, grp_n) \
    for i in range(grps_1) for j in range(grps_2)]), 1) # demand
id_1 = np.repeat(np.arange(grps_1 * grps_2), grp_n) # group, product number
id_2 = np.tile(np.repeat(np.arange(grps_2), grp_n), grps_1) # super-group, product group
shape_1 = len(np.unique(id_1))
shape_2 = len(np.unique(id_2))

我只管理了一个层次结构:

代码语言:javascript
运行
复制
with pm.Model() as model_h1:
    #
    mu_mu_hyper = pm.Normal('mu_mu_hyper', mu = 0, sd = 10)
    mu_sd_hyper = pm.HalfNormal('mu_sd_hyper', 10)
    sd_hyper = pm.HalfNormal('sd_hyper', 10)
    #
    mu = pm.Normal('mu', mu = mu_mu_hyper, sd = mu_sd_hyper, shape = shape_1)
    sd = pm.HalfNormal('sd', sd = sd_hyper, shape = shape_1)

    y = pm.Normal('y', mu = mu[id_1], sd = sd[id_1], observed = x)

    trace_h1 = pm.sample(1000)

#az.plot_forest(trace_h1, var_names=['mu', 'sd'], combined = True)

但是,我如何编写2个层次结构呢?

代码语言:javascript
运行
复制
# 2 hierarchies .. doesn't work
with pm.Model() as model_h2:  
    #
    mu_mu_hyper2 = pm.Normal('mu_mu_hyper2', mu = 0, sd = 10)
    mu_sd_hyper2 = pm.HalfNormal('mu_sd_hyper2', sd = 10)
    sd_mu_sd_hyper2 = pm.HalfNormal('sd_mu_sd_hyper2', sd = 10)
    sd_hyper2 = pm.HalfNormal('sd_hyper2', sd = 10)    
    #
    mu_mu_hyper1 = pm.Normal('mu_hyper1', mu = mu_mu_hyper2, sd = mu_sd_hyper2, shape = shape_2)
    mu_sd_hyper1 = pm.HalfNormal('mu_sd_hyper1', sd = sd_mu_sd_hyper2, shape = shape_2)
    sd_hyper1 = pm.HalfNormal('sd_hyper1', sd = sd_hyper2, shape = shape_2)
    #sd_hyper1 = pm.HalfNormal('sd_hyper1', sd = sd_hyper2[id_2], shape = shape_2)??
    #
    mu = pm.Normal('mu', mu = mu_mu_hyper1, sd = mu_sd_hyper1, shape = shape_1)
    sd = pm.HalfNormal('sd', sd = sd_hyper1, shape = shape_1)
    
   y = pm.Normal('y', mu = mu[id_1], sd = sd[id_1], observed = x)

    trace_h2 = pm.sample(1000)
EN

回答 1

Stack Overflow用户

发布于 2021-08-06 07:40:09

您可以尝试遍历产品组,并使用组的均值、std作为属于此特定组的产品的约束。

代码语言:javascript
运行
复制
# sample product group to product mapping
group_product_mapping = {0: [1, 2, 3], 1: [4, 5, 6]}
total_groups = len(group_product_mapping.keys())
with pm.model() as model_h:
    mu_all = pm.Normal('mu_all', 0, 10)
    sd_all = pm.HalfNormal('sd_all', 10)
    sd_mu_group = pm.HalfNormal('sd_mu_group', 10)
    
    # group parameters constrained to mu, sd from all
    mu_group = pm.Normal('mu_group', mu_all, sd_all, shape=total_groups) 
    sd_group = pm.HalfNormal('sd_group', sd_mu_group, shape=total_groups)
    
    mu_products = dict()
    # iterate through groups and constrain product parameters to the product group they belong to
    for idx, group in enumerate(group_product_mapping.keys()):
        mu_products[group] = pm.Normal(f'mu_products_{group}', mu_group[idx], sd_group[idx], shape=len(group_product_mapping[group]))
        sd_produtcs[group] = pm.HalfNormal(f'sd_mu_products_{group}', 10)
票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/67369450

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档