我正在做的是我已经生成了一个熊猫的DataFrame:
df_output = pd.DataFrame(columns={"id","Payout date", "Amount"}
在'Payout date‘列中是一个日期时间,在'Amount’列中是一个浮点数。我从csv中获取每一行的值:
df=pd.read_csv("file.csv", encoding = "ISO-8859-1", low_memory=False)
但是当我赋值时:
df_output.loc[df_output['id'] == index, 'Payout date'].iloc[0]=(parsed_date)
pay=payments.get()
ref=refunds.get()
df_output.loc[df_output['id'] == index, 'Amount'].iloc[0]=(pay+ref-for_next_day)
我打印了列'Payout date‘和' amount’,它只打印id,NaT表示支出,NaN表示金额,即使在将它们转换为浮点数时也是如此
df_output['Amount']=pd.to_numeric(df_output['Amount'])
df_output['Payout date'] = pd.to_datetime(df_output['Payout date'])
我还尝试在将值传递给DataFrame之前对它们进行强制转换,但没有成功,所以我得到的结果是:
id Payout date Amount
1 NaT NaN
2 NaT NaN
3 NaT NaN
4 NaT NaN
5 NaT NaN
取而代之的是,我正在寻找类似这样的东西:
id Payout date Amount
1 2019-03-11 3.2
2 2019-03-11 3.2
3 2019-03-11 3.2
4 2019-03-11 3.2
5 2019-03-11 3.2
编辑
print(df_output.head(5))
print(df.head(5))
id Payout date Amount
1 NaT NaN
2 NaT NaN
3 NaT NaN
4 NaT NaN
5 NaT NaN
id Created (UTC) Type Currency Amount Fee Net
1 2016-07-27 13:28:00 charge mxn 672.0 31.54 640.46
2 2016-07-27 15:21:00 charge mxn 146.0 9.58 136.42
3 2016-07-27 16:18:00 charge mxn 200.0 11.83 188.17
4 2016-07-27 17:18:00 charge mxn 146.0 9.58 136.42
5 2016-07-27 18:11:00 charge mxn 286.0 15.43 270.57
发布于 2019-03-13 06:02:29
可能最简单的做法就是重命名正在加载的数据帧的列:
df = pd.read_csv("file.csv", encoding = "ISO-8859-1", low_memory=False, index_col='id')
df.columns(rename={"Created (UTC)":'Payout Date'}, inplace=True)
df_output = df[['Payout Date', 'Amount']]
编辑:如果您试图将一个数据帧中的列分配给另一个数据帧中的列,只需执行以下操作:
output_df['Amount'] = df['Amount']
https://stackoverflow.com/questions/55111233
复制相似问题