腾讯 · 研究员 (已认证)
TFLM(Tensorflow lite micro)验证嵌入式端模型运行,直截了当做法是:对比PC端和嵌入式端运行的tflite模型的输入输出。笔者就Tiny...
Elasticsearch-spark-based recommender系统方案的两个关键步骤:
推荐系统是机器学习当前最著名、最广泛使用,且已经证明价值的落地案例。尽管有许多资源可用作训练推荐模型的基础,但解释如何实际部署这些模型来创建大型推荐系统的资源仍...
AIoT创新应用比赛是一个命题作文,AIoT = AI + IoT 是基本了解;要求使用RT1062和TencentOS-tiny是限制条件,也是IDEA创意的...
NXP eIQ平台提供了嵌入式平台集成化的机器学习应用部署能力,支持BYOD(Bring Your Own Data)和BYOM(Bring You Own M...
PySpark on HPC系列记录了我独自探索在HPC利用PySpark处理大数据业务数据的过程,由于这方面资料少或者搜索能力不足,没有找到需求匹配的框架,不...
在HPC上启动任务以local模式运行自定义spark,可以自由选择spark、python版本组合来处理数据;起多个任务并行处理独立分区数据,只要处理资源足够...
是否这样的场景:在公司开心的搬砖,临时其他事打断后没有继续,没有及时把代码更新到repo;回到家后,想继续开心的搬砖,但是丢失白天在公司的进度,勉为其难重新实现...
本地内部集群资源有限,简单的数据处理跑了3天。HPC上有很多计算资源,出于先吃锅里的再吃碗里的思想,琢磨先充分利用共有资源。简单调研下,也不是很复杂的事情。
先后用过wordpress、GHost搭建过个人博客,Wordpress让人诟病的是相比与GHost的轻量而庞大复杂框架,安装环境依赖复杂,配置繁琐,过程痛苦,...
对时间序列的index进行resample是很常见的操作。比如,按日、周、月、季度统计用户新增、活跃、累计等,就需要对用户表进行resample操作。 pand...
Spark无疑是当今数据科学和大数据领域最流行的技术之一。尽管它是用Scala开发的,并在Java虚拟机(JVM)中运行,但它附带了Python绑定,也称为Py...
模糊字符串匹配(Fuzzy string matching)是一种查找近似模式(而不是完全匹配)的技术。换句话说,模糊字符串匹配是一种搜索类型,即使用户拼错单词...
colab自不必多说,对机器学习从业者是布道者的角色。配合google driver,一些想法不会受限于硬件条件得以起航,就算有了条件,多处统一访问也方便开发。...
最近在学习edx的HarvardX TinyML 3 - deploying TinyML。这个在线课程大大降低了TinyML的学习曲线的陡峭度,可以作为《Ti...
标准化流(Normalizing Flows)是算法工具包中的一种便捷技术,它将简单的密度(如高斯分布)转换为丰富的复杂分布,可用于生成模型,RL和变分推断。 ...
朴素贝叶斯分类器是基于贝叶斯定理以及一些有关特征独立性的强(朴素)假设的简单概率分类器,也称“独立特征模型”。本文demo使用TF的实现朴素贝叶斯分类器,用Te...
有任务需要处理一堆收集来得开源数据集,在服务器单机跑了一天才给结果,多方咨询有HPC可以用,或者叫supercomputer,或者叫计算机集群,大部分的简称gr...
技术到了最后,都是要在实际生活中实践,才有活力;而不是曲高和寡,光是鼓吹技术多牛逼,没有切实改变生活,提高体验,产生经济价值,那样的技术都是耍流氓。
上一篇文章描述了为什么quantization 量化的int8足够运行推理,以及Quantization量化对TinyML的重要性,但是没有深入说明Quanti...
扫码关注云+社区
领取腾讯云代金券