机器学习算法原理与实践

127 篇文章
59 人订阅

全部文章

刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

机器学习中的矩阵向量求导(三) 矩阵向量求导之微分法

    在机器学习中的矩阵向量求导(二) 矩阵向量求导之定义法中,我们讨论了定义法求解矩阵向量求导的方法,但是这个方法对于比较复杂的求导式子,中间运算会很复杂,...

652
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

机器学习中的矩阵向量求导(一) 求导定义与求导布局

    在之前写的上百篇机器学习博客中,不时会使用矩阵向量求导的方法来简化公式推演,但是并没有系统性的进行过讲解,因此让很多朋友迷惑矩阵向量求导的具体过程为什么...

822
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

机器学习中的矩阵向量求导(二) 矩阵向量求导之定义法

    在机器学习中的矩阵向量求导(一) 求导定义与求导布局中,我们讨论了向量矩阵求导的9种定义与求导布局的概念。今天我们就讨论下其中的标量对向量求导,标量对矩...

672
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(十九) AlphaGo Zero强化学习原理

    在强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)中,我们讨论了MCTS的原理和在棋类中的基本应用。这里我们在前一节MCTS的基础上,讨论下...

1425
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)

    在强化学习(十七) 基于模型的强化学习与Dyna算法框架中,我们讨论基于模型的强化学习方法的基本思路,以及集合基于模型与不基于模型的强化学习框架Dyna...

813
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(十五) A3C

    在强化学习(十四) Actor-Critic中,我们讨论了Actor-Critic的算法流程,但是由于普通的Actor-Critic算法难以收敛,需要一...

881
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(十六) 深度确定性策略梯度(DDPG)

    在强化学习(十五) A3C中,我们讨论了使用多线程的方法来解决Actor-Critic难收敛的问题,今天我们不使用多线程,而是使用和DDQN类似的方法:...

3264
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(十七) 基于模型的强化学习与Dyna算法框架

    在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学...

1192
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(十四) Actor-Critic

    在强化学习(十三) 策略梯度(Policy Gradient)中,我们讲到了基于策略(Policy Based)的强化学习方法的基本思路,并讨论了蒙特卡...

1062
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(十三) 策略梯度(Policy Gradient)

    在前面讲到的DQN系列强化学习算法中,我们主要对价值函数进行了近似表示,基于价值来学习。这种Value Based强化学习方法在很多领域都得到比较好的应...

1051
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(十二) Dueling DQN

    在强化学习(十一) Prioritized Replay DQN中,我们讨论了对DQN的经验回放池按权重采样来优化DQN算法的方法,本文讨论另一种优化方...

1323
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(十一) Prioritized Replay DQN

    在强化学习(十)Double DQN (DDQN)中,我们讲到了DDQN使用两个Q网络,用当前Q网络计算最大Q值对应的动作,用目标Q网络计算这个最大动作...

1914
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(十)Double DQN (DDQN)

    在强化学习(九)Deep Q-Learning进阶之Nature DQN中,我们讨论了Nature DQN的算法流程,它通过使用两个相同的神经网络,以解...

2802
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(九)Deep Q-Learning进阶之Nature DQN

    在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个...

1591
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(八)价值函数的近似表示与Deep Q-Learning

    在强化学习系列的前七篇里,我们主要讨论的都是规模比较小的强化学习问题求解算法。今天开始我们步入深度强化学习。这一篇关注于价值函数的近似表示和Deep Q...

1701
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(六)时序差分在线控制算法SARSA

    在强化学习(五)用时序差分法(TD)求解中,我们讨论了用时序差分来求解强化学习预测问题的方法,但是对控制算法的求解过程没有深入,本文我们就对时序差分的在...

1032
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(七)时序差分离线控制算法Q-Learning

    在强化学习(六)时序差分在线控制算法SARSA中我们讨论了时序差分的在线控制算法SARSA,而另一类时序差分的离线控制算法还没有讨论,因此本文我们关注于...

2185
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(五)用时序差分法(TD)求解

    在强化学习(四)用蒙特卡罗法(MC)求解中,我们讲到了使用蒙特卡罗法来求解强化学习问题的方法,虽然蒙特卡罗法很灵活,不需要环境的状态转化概率模型,但是它...

1632
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(四)用蒙特卡罗法(MC)求解

    在强化学习(三)用动态规划(DP)求解中,我们讨论了用动态规划来求解强化学习预测问题和控制问题的方法。但是由于动态规划法需要在每一次回溯更新某一个状态的...

1262
刘建平Pinard

唯品会 · 资深开发工程师 (已认证)

强化学习(三)用动态规划(DP)求解

    在强化学习(二)马尔科夫决策过程(MDP)中,我们讨论了用马尔科夫假设来简化强化学习模型的复杂度,这一篇我们在马尔科夫假设和贝尔曼方程的基础上讨论使用动...

1403

扫码关注云+社区