机器学习越来越多地在企业应用,本文跟大家分享一个采用python,应用决策树算法对跨国食品超市顾客等级进行预测的具体案例。
由于文件标题是中文,直接读取会报错,所以加了encoding编码申明。一般encoding设置成GBK、utf-8、GB2312即可满足读取需求。
step1:定义一个5行70列的全0矩阵,命名为stu_tit,用来存放每位学生的抽题结果(其中每一列可以存储一位学生抽取的题号)。
比如一个数据框中只有借款人的年龄(类似1994年2月8号),我们想把这一列转换成具体的岁数,放到模型中使用。
比如要查询所有借钱男性中年龄最大的人的信息,首先要查出所有男性的信息,再查在这些人中间年龄最大的人的信息,这就是子查询。
注意:本文沿用数据分析第一课【Python数据分析—数据建立】里的数据框date_frame:
在对海量数据进行分析的过程中,我们可能要把文本型的数据处理成数值型的数据,方便放到模型中进行使用。
本文是数据分析的第三课,教大家如何在python中对数据框进行简单操作,包括更改列名、显示某列中的部分字符、对某列的数值型数据进行取整等。
由于互联网的快速发展,网络上存储了越来越多的数据信息。各大公司通过对这些数据进行分析,可以得到一些有助于决策的信息。
今天我们用Python来实现一个简单的点名系统,之后有时间再慢慢调优这个程序。你也可以把这个程序改成公司开会或聚会的随机点名系统。
Python中有很多常用的数据分析函数,可以帮助我们对样本有一个初步的认识,比如describe()函数,可以很方便地生成每个变量的最大值、最小值、分位数等。
它通过对已有样本的学习生成一颗决策树(可看成if-then规则集合),从而能对新样本作出相应分类。
雪意寒凉,冰冷了几世千年的轮回。繁华消落成颗颗泛黄泪珠,是凋零,还是化腐朽为神奇?
我第一次建立关联图谱用的是R语言,通过写代码帮公安挖掘团伙犯罪,并用图形展示团伙之间的关联关系。
Python按照某些列去重,可用drop_duplicates函数轻松处理。本文致力用简洁的语言介绍该函数。
记得刚工作的时候,用的第一个模型就是逻辑回归。虽然从大二(大一暑假参加系里建模培训,感谢知识渊博的老师把我带入模型的多彩世界!)就参加了全国大学生数学建模比赛,...
扫码关注云+社区
领取腾讯云代金券