用户6881919的专栏

13 篇文章
2.2K 次阅读
15 人订阅

全部文章

邵维奇

论文阅读14-----强化学习在推荐系统中的应用

There are great interests as well as many challenges in applying reinforcement l...

14430
邵维奇

论文阅读13-----基于强化学习的推荐系统

Applying reinforcement learning (RL) in recommender systems is attractive but co...

17820
邵维奇

论文阅读11-----基于强化学习的推荐系统

Abstract Reinforcement learning (RL) has recently been introduced to interactive...

13900
邵维奇

论文阅读10-----基于强化学习的互联网应用

With the recent prevalence of Reinforcement Learning (RL), there have been treme...

9420
邵维奇

论文阅读9-----基于强化学习的推荐系统

With the recent advances in Reinforcement Learning (RL),there have been tremendo...

14000
邵维奇

论文阅读8-----基于强化学习的推荐系统

With the recent prevalence of Reinforcement Learning (RL), there have been treme...

15420
邵维奇

论文阅读7-----基于强化学习的推荐系统

In this paper, we propose a novel Deep Reinforcement Learning framework for news...

12930
邵维奇

论文阅读6-----基于强化学习的推荐系统

Recommender systems play a crucial role in mitigating the problem of information...

14850
邵维奇

论文阅读5-----基于强化学习的推荐系统

Recommender systems can mitigate the information overload problem by suggesting ...

10800
邵维奇

论文阅读4-----基于强化学习的推荐系统

Recommender systems play a crucial role in mitigating the problem of information...

15600
邵维奇

论文阅读3-----基于强化学习的推荐系统

problems in recommendation: a complex user state space (但好在有很多隐式的数据可以使用)

37080
邵维奇

论文阅读2-----基于强化学习的推荐系统

特别多的状态和动作空间会造成较低的credit assignment problem and low quality reward signal.

23160
邵维奇

论文阅读-----强化学习在推荐系统中的应用

看这篇文章主要是在知乎和腾讯云上看的,主要是文章发在KDD2019上没有下载渠道。这篇文章主要的亮点在于对feedback,dwellingtime,retur...

223120

扫码关注云+社区

领取腾讯云代金券