展开

关键词

解读 | 生成人脸修复模型:同时使用两个鉴别器,直接合成逼真人脸

与之前很多其他工作不同,针对人脸修复任务,这篇论文的作者同时使用了两个鉴别器来构建整个模型,因此不论是局部图像还是整个图像,看上去都更加逼真。 2. 方法 2.1 模型结构 ? 局部鉴别器被用来判别图像缺失区域中合成的图像补丁是否真实。整体鉴别器则用来判别整张图像的真实性。这两个鉴别器的架构相似于论文《用深度卷积生成对抗网络来进行非监督表征学习》中的所述架构。 两个鉴别器的损失函数的不同之处在于:局部鉴别器的损失函数 (L_a1) 仅仅反向传播图像缺失区域的损失梯度,而整体鉴别器的损失函数 (L_a2) 反向传播整个图像的损失梯度。 结论 这个基于生成对抗网络的模型具有两个鉴别器和一个语义正则化网络,能够处理人脸修复任务。它能够在随机噪声中成功地合成缺失的人脸部分。 6. 改进建议 这个模型一个局限是并不能处理一些未对齐的人脸,可以增加一个面部变形的网络来将输入的人脸规范化。

95080

深度学习之视频人脸识别系列三:人脸表征

作者 | 东田应子 编辑 | 安可 出品 | 磐创AI技术团队 【磐创AI导读】本文是深度学习之视频人脸识别系列的第三篇文章,介绍人脸表征相关算法和论文综述。 在本系列第一篇文章里我们介绍了人脸识别领域的一些基本概念,分析了深度学习在人脸识别的基本流程,并总结了近年来科研领域的研究进展,最后分析了静态数据与视频动态数据在人脸识别技术上的差异;在第二篇文章中介绍了人脸检测与对齐的相关算法 一、人脸表征 把人脸图像通过神经网络,得到一个特定维数的特征向量,该向量可以很好地表征人脸数据,使得不同人脸的两个特征向量距离尽可能大,同一张人脸的两个特征向量尽可能小,这样就可以通过特征向量来进行人脸识别 在该人脸识别模型中分为四个阶段:人脸检测 => 人脸对齐 => 人脸表征 => 人脸分类,在LFW数据集中可以达到97.00%的准确率。 三角化后的人脸变为有深度的3D三角网 f. 将三角网做偏转,使人脸的正面朝前。 g. 最后放正的人脸 h.

55730
  • 广告
    关闭

    直播应用9.9元起 即刻拥有

    9.9元享100GB流量,1年有效,结合移动直播SDK、美颜特效SDK及小程序直播插件等,构建云+端一体化直播平台,支持电商带货,在线教育,游戏直播,社交直播等多场景

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    视频人脸检测——OpenCV版(三)

    视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——OpenCV版(二)》 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置, 把处理的图片逐帧绘制给用户,用户看到的效果就是视频人脸检测。 视频人脸识别 这个时候,用到了上一节的《图片人脸检测——OpenCV版(二)》 把人脸识别的代码封装成方法,代码如下: def discern(img): gray = cv2.cvtColor x, y, w, h = faceRect cv2.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 2) # 框出人脸 cap.release() # 释放摄像头 cv2.destroyAllWindows() # 释放窗口资源 完整的代码如下: # -*- coding:utf-8 -*- # OpenCV版本的视频检测

    32930

    视频人脸检测——Dlib版(六)

    往期目录 视频人脸检测——Dlib版(六) OpenCV添加中文(五) 图片人脸检测——Dlib版(四) 视频人脸检测——OpenCV版(三) 图片人脸检测——OpenCV版(二) OpenCV 视频人脸检测是图片识别的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——Dlib版(四)》 除了人脸识别用的是Dlib外,还是用OpenCV读取摄像头和处理图片(转为灰色),所以给出相关的文档 技术实现 有了OpenCV的视频人脸检测,Dlib也大致相同除了视频识别器模型的声明和使用不同,具体的细节请参考,视频人脸检测——OpenCV版(三) 那篇已经讲的很细致了,在这就不具体叙述了。 .waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() 那么,OpenCV和Dlib的视频识别对比 ,有两个地方是不同的: 1.Dlib模型识别的准确率和效果要好于OpenCV; 2.Dlib识别的性能要比OpenCV差,使用视频测试的时候Dlib有明显的卡顿,但是OpenCV就好很多,基本看不出来;

    76270

    视频人脸检测——OpenCV版(三)

    视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——OpenCV版(二)》 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置,把处理的图片逐帧绘制给用户 ,用户看到的效果就是视频人脸检测。 视频人脸识别 这个时候,用到了上一节的《图片人脸检测——OpenCV版(二)》 把人脸识别的代码封装成方法,代码如下: def discern(img): gray = cv2.cvtColor x, y, w, h = faceRect cv2.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 2) # 框出人脸 cap.release() # 释放摄像头 cv2.destroyAllWindows() # 释放窗口资源 完整的代码如下: # -*- coding:utf-8 -*- # OpenCV版本的视频检测

    65670

    视频人脸检测——Dlib版(六)

    前言 Dlib的人脸识别要比OpenCV精准很多,一个是模型方面的差距,在一方面和OpenCV的定位有关系,OpenCV是一个综合性的视觉处理库,既然这么精准,那就一起赶快来看吧。 视频人脸检测是图片识别的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——Dlib版(四)》 除了人脸识别用的是Dlib外,还是用OpenCV读取摄像头和处理图片(转为灰色),所以给出相关的文档 技术实现 有了OpenCV的视频人脸检测,Dlib也大致相同除了视频识别器模型的声明和使用不同,具体的细节请参考,视频人脸检测——OpenCV版(三) 那篇已经讲的很细致了,在这就不具体叙述了。 .waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() 那么,OpenCV和Dlib的视频识别对比 ,有两个地方是不同的: 1.Dlib模型识别的准确率和效果要好于OpenCV; 2.Dlib识别的性能要比OpenCV差,使用视频测试的时候Dlib有明显的卡顿,但是OpenCV就好很多,基本看不出来;

    25020

    深度学习之视频人脸识别系列四:人脸表征-续

    作者 | 别看我只是一只洋 编辑 | 安可 出品 | 磐创AI技术团队 【磐创AI导读】本文是深度学习之视频人脸识别系列的第四篇文章,接着第三篇文章,继续介绍人脸表征相关算法和论文综述。 在本系列第一篇文章里我们介绍了人脸识别领域的一些基本概念,分析了深度学习在人脸识别的基本流程,并总结了近年来科研领域的研究进展,最后分析了静态数据与视频动态数据在人脸识别技术上的差异;在第二篇文章中介绍了人脸检测与对齐的相关算法 一、人脸表征 把人脸图像通过神经网络,得到一个特定维数的特征向量,该向量可以很好地表征人脸数据,使得不同人脸的两个特征向量距离尽可能大,同一张人脸的两个特征向量尽可能小,这样就可以通过特征向量来进行人脸识别 CosFace使用mtcnn进行人脸检测与对齐,人脸表征训练模型使用基于residual units 64层卷积网络的Sphere Face,在5M的训练集上训练,在LFW数据集上测试,精度达到99.73% 三、总结 本期文章主要介绍人脸表征相关算法和论文综述,人脸检测、对齐、特征提取等这些操作都可以在静态数据中完成,下一期将给大家介绍在视频数据中进行人脸识别的另一个重要的算法,视频人脸跟踪的概念与方法。

    1K10

    Java + opencv 实现人脸识别,图片人脸识别、视频人脸识别、摄像头实时人脸识别

    -- 视频摄像头 --> <! 、实时摄像头人脸识别、视频文件人脸识别 * @Description: OpenCV-4.1.1 测试文件 * @date: 2019年8月19日 17:17:48 * @version: V-1.0.0 ,识别成功保存图片到本地 getVideoFromCamera(); // 2- 从本地视频文件中识别人脸 // getVideoFromFile(); Mat video 中 HighGui.imshow("本地视频识别人脸", getFace(video));//3 显示图像 index=HighGui.waitKey : 2- 测试本地视频识别人脸 3- 测试本地图片人脸识别 4- 测试本地2张图片人脸的相似度 完结。

    21020

    深度学习之视频人脸识别系列二:人脸检测与对齐

    问题描述: 人脸检测解决的问题为给定一张图片,输出图片中人脸的位置,即使用方框框住人脸,输出方框的左上角坐标和右下角坐标或者左上角坐标和长宽。 算法难点包括:人脸大小差异、人脸遮挡、图片模糊、角度与姿态差异、表情差异等。 第三阶段:与第二阶段类似,最终网络输出人脸框坐标、关键点坐标和人脸分类(是人脸或不是)。如下图所示: ? 二、人脸对齐(部分参考于GraceDD的博客文章) 人脸对齐通过人脸关键点检测得到人脸的关键点坐标,然后根据人脸的关键点坐标调整人脸的角度,使人脸对齐,由于输入图像的尺寸是大小不一的,人脸区域大小也不相同 ,下一期我给大家介绍一下人脸表征的相关算法,即通过深度学习提取人脸特征,通过比较人脸特征进行人脸识别与验证。

    85520

    python+opencv 实现图像人脸检测及视频中的人脸检测

    下载HAAR与LBP数据 2. opencv相关知识 二、python+opencv实现人脸检测 1. 图像单人脸检测 2. 图像多人脸检测 3. 视频人脸检测 4. 视频人脸检测 # -*- coding: UTF-8 -*- """ @Author :叶庭云 @公众号 :修炼Python @CSDN :https://yetingyun.blog.csdn.net / """ import cv2 # 加载视频 cap = cv2.VideoCapture('test.mp4') # 创建一个级联分类器 加载一个.xml分类器文件 它既可以是Haar特征也可以是 /face_detection/haarcascades/haarcascade_frontalface_default.xml') while True: # 读取视频片段 ret, 自己进行简单测试时也会发现,人物动作、视频中镜头切换过快、背景变化等因素,可能会造成对视频人脸检测不准确。 4.

    17220

    python+opencv 实现图像人脸检测及视频中的人脸检测

    下载HAAR与LBP数据 2. opencv相关知识 二、python+opencv实现人脸检测 1. 图像单人脸检测 2. 图像多人脸检测 3. 视频人脸检测 4. 视频人脸检测 import cv2 # 加载视频 cap = cv2.VideoCapture('test.mp4') # 创建一个级联分类器 加载一个.xml分类器文件 它既可以是Haar特征也可以是 /face_detection/haarcascades/haarcascade_frontalface_default.xml') while True: # 读取视频片段 ret, 自己进行简单测试时也会发现,人物动作、视频中镜头切换过快、背景变化等因素,可能会造成对视频人脸检测不准确。 4. /face_detection/haarcascades/haarcascade_frontalface_default.xml') while True: # 读取视频片段 flag

    4.8K50

    用AI鉴别女友是否拍过羞羞视频?当心黑产的圈套

    一位名为“将记忆深埋”程序员博主公开表示自己准备上线一个“拯救老实人”的人脸识别工具。 ? 接下来是重点:这个工具通过机器学习的方式把羞羞网站的人脸数据和各大社交媒体的人脸数据交叉对比,鉴别那些出现在羞羞视频里的“退休小姐姐”。 一来没有任何证据佐证它的识别率,由始至终全凭博主一面之词;二是即便识别率高达99%,剩余1%造成的误伤也是极其致命的;再者网上存在着很多偷拍视频,把“被偷拍”等同于“从事羞羞事业”,从事实逻辑上也明显不通 页面上诸如“专为保护老实人而生”、“想知道TA拍过的照片和视频吗”的挑逗暗示,则进一步放大的窥私心理。再加上绿得发黑的页面背景,从视觉上强化了心理冲击,把持不住的就放手一试了。 一进入页面,当头就是“人脸定位、智能模拟、数据对比”三个响当当的技术大棒,给你营造一种专业的错觉。 在进行到所谓的“人脸解码”和“智能匹配”阶段,页面上则是事无巨细地把整个过程和你演示了一遍。

    1.1K30

    基于 FPGA 的视频人脸伪造设备

    鉴于此,我们决定采用 Xilinx 的 PYNQ-Z2 开发板,将 FPGA 高度并行化的特点与人工智能安全相结合,设计了一种具有实时人脸伪造能力的视频采集设备。 如果利用在会议视频中,可以协助会议平台完善对参会者的身份验证的系统,防止出现利用参会者的照片、视频信息冒名顶替的行为。 最后将处理结果返回到上位机终端,实现真假人脸的转换。 图像处理算法部分说明: 首先进行帧截取,将动态视频流转换成静态帧。通过锚框将全身人像的人脸部分截取出来,再通过人脸特征检测提取出人脸的特征。 然后采用泊松融合或者前后景+边缘膨胀的方式将人脸还原到静态图片帧(具体采用哪种取决于算力与实时性的要求),最终将静态图片帧还原到视频流中。 2.3 图像处理算法介绍 2.3.1 视频流接入的设计 考虑到可能的不同情境,我们为此设计了两种视频流的接入方式。

    31911

    Python学习案例之视频人脸检测识别

    前言 上一篇博文与大家分享了简单的图片人脸识别技术,其实在实际应用中,很多是通过视频流的方式进行识别,比如人脸识别通道门禁考勤系统、人脸动态跟踪识别系统等等。 案例 这里我们还是使用 opencv 中自带了 haar人脸特征分类器,通过读取一段视频来识别其中的人脸。 : utf-8 -*- __author__ = "小柒" __blog__ = "https://blog.52itstyle.vip/" import cv2 import os # 保存好的视频检测人脸并截图 CatchPICFromVideo(window_name, camera_idx, catch_pic_num, path_name): cv2.namedWindow(window_name) # 视频来源 cap = cv2.VideoCapture(camera_idx) # 告诉OpenCV使用人脸识别分类器 classfier = cv2.CascadeClassifier

    1.2K20

    基于Python实现视频人脸融合功能

    为达到我们AI换脸的目的,我们首先需要将这段视频逐帧提取成照片 def vedio_2_pic(self,file,save_path): """ 逐帧取照片 file:视频的位置 save_path :保存路径 """ # 读取视频 video = cv2.VideoCapture(file) # 获取视频帧率 fps = video.get(cv2.CAP_PROP_FPS) # 获取画面大小 ,我们将视频中的音频进行提取并保存下来,代码如下: def getMusic(self,video_name,save_path): """ 获取指定视频的音频 video_name:视频路径 ,代码如下: """ 图片转视频 save_path:视频保存路径 """ # 写入视频 fourcc = cv2.VideoWriter_fourcc(*'mp4v') video = video.write(img) video.release() 总结 到此这篇关于基于Python实现视频人脸融合功能的文章就介绍到这了,更多相关Python实现视频人脸融合内容请搜索ZaLou.Cn

    31710

    深度学习中最常见GAN模型应用与解读

    ) 超像素(Super Resolution) 照片修复(Photo Inpainting) 视频预测(Video Prediction) 三维对象生成(3D Object Generation) GAN 网络主要由生成网络与鉴别网络两个部分,生成网络负责生成新的数据实例、鉴别网络负责鉴别生成的数据实例与真实数据之间的差异,从而区别哪些是真实数据、哪些是假数据。 Networks) 论文地址 https://arxiv.org/pdf/1703.10593.pdf 通过循环一致性GAN网络实现图像到图像的翻译问题,是条件GAN扩展与升级版本,关于这个模型最经典的视频就是把马变成斑马的那个视频 、寻找失散儿童、数字娱乐脸谱生成等方向都发挥了重要作用,基于cGAN的人脸生成很好的克服了传统人脸老年化不真实与人脸特征丢失的弊端。 基于GAN提出了Age-cGAN模型,首先基于年龄条件生成指定年龄的人脸,通过隐式的向量优化保持输入人脸的结构特征,重建输入人脸

    1.7K41

    只要一张照片,说话唱歌视频自动生成,降维打击Deepfakes丨已开源

    只要有一张静态的人脸照片,甭管是谁,在这个新AI的驱动下,任意配上一段语音,就能张嘴说出来。 当然,上面的gif动图没有声音,你可以点开下面视频听听效果,里面有川普、施瓦辛格,还有爱因斯坦。 逻辑上不难理解,如果想让生成的假视频逼真,画面上至少得有两点因素必须满足: 一是人脸图像必须高质量,二是需要配合谈话内容,协调嘴唇、眉毛等面部五官的位置。 这是一个端对端的语音驱动的面部动画合成模型,通过静止图像和一个语音生成人脸视频。 所以,最新版基于语音的人脸合成模型来了。模型由时间生成器和3个鉴别器构成,结构如下: ? 这个系统使用了多个鉴别器来捕捉自然视频的不同方面,各部分各司其职。

    56530

    这家帮迅雷、小咖秀鉴别“小黄图”的公司要做视频大生意

    图普告诉雷锋网,其产品包括图像审核、増值及搜索,有鉴黄、人脸识别、场景识别等数十个模块,目前日均处理3亿张图片,是国内最大的图像识别云服务公司。 不过图普最知名的还是鉴别“小黄图”,图像视频审核也是现在最主要的服务,客户包括受不良信息困扰的迅雷,和王思聪投过的直播平台17等。 ? 图片来自图普官网截图 鉴别小黄图听起来像是个苦力活,但与其它类型的图像一样,用的也是深度学习技术。 后来由于快播事件,他们发现内容审核对很多社交及云平台都是刚需,才做起了鉴别小黄图。 不过鉴黄并不是图普的目标。也许是继承了腾讯的基因,李明强给图普的定位是给视频时代建立连接。 李明强认为,根据内容进行推荐、搜索,提供差异化服务,视频行业才算到了第二阶段,目前的审核服务是为了满足基础需求,技术成熟后会提供广告投放和导购等增值服务。 看来,鉴别小黄图还只是开始。

    51670

    AI换脸鉴别率超99.6%,微软用技术应对虚假信息

    从生成足以以假乱真的名人不雅视频开始,很多使用者将这个“换脸神器”当成了视频造假工具,并通过社交网络将虚假信息(disinformation)传播到全世界。 以技术防御技术,让假脸无所遁形 为了解决这个问题,学界与业界开始研究如何利用 AI 技术去反向鉴别图像、视频的真伪。 Face2Face 则是用其他真实的人脸去替换原本的人脸,不涉及人脸的生成,对于它制造的脸,人类的识别率只有41%*。 作为目前学术界最大的合成视频数据库之一,由慕尼黑技术大学创建的 FaceForensics 数据库涵盖了经过以上三种换脸算法编辑的公开视频,以供学术研究使用。 多年来,微软亚洲研究院在人脸识别、图像生成等方向都拥有业界领先的算法和模型。

    28020

    AI换脸鉴别率超99.6%,微软用技术应对虚假信息

    从生成足以以假乱真的名人不雅视频开始,很多使用者将这个“换脸神器”当成了视频造假工具,并通过社交网络将虚假信息(disinformation)传播到全世界。 以技术防御技术,让假脸无所遁形 为了解决这个问题,学界与业界开始研究如何利用 AI 技术去反向鉴别图像、视频的真伪。 Face2Face 则是用其他真实的人脸去替换原本的人脸,不涉及人脸的生成,对于它制造的脸,人类的识别率只有41%*。 作为目前学术界最大的合成视频数据库之一,由慕尼黑技术大学创建的 FaceForensics 数据库涵盖了经过以上三种换脸算法编辑的公开视频,以供学术研究使用。 多年来,微软亚洲研究院在人脸识别、图像生成等方向都拥有业界领先的算法和模型。

    39020

    扫码关注腾讯云开发者

    领取腾讯云代金券