本文是学习github5.com 网站的报告而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们
2014年Ian Goodfellow首次提出Generative adversarial networks (生成对抗网络)简称GANs,生成对抗网络就开始在计算机视觉领域得到广泛应用,成为对有用的视觉任务网络之一,也是如今计算机视觉热点研究领域之一,其已经出现的应用领域与方向如下:
近日社交网络上爆红的一款换脸应用,让许多普通用户体验到了跟爱豆同框、与偶像飙戏的快乐,也因数据使用带来的问题陷入了舆论的漩涡——除了用户隐私保障,如何辨别和处理换脸应用所制造的合成照片、合成视频是新型科技产品带来的新挑战。
曾造出无数“小视频”、恶搞过多位明星的知名换脸神器Deepfakes,这下被降维打击了。
机器之心专栏 人民中科、中科院自动化所国家模式识别实验室 来自人民中科与中科院自动化所国家模式识别实验室的研究团队,提出了一种基于身份空间约束的伪造人脸检测新方法,该方法具有较好的泛化性与兼容性。 随着深度学习等技术的发展,机器自动生成内容的水平不断提高;其中深度伪造(Deepfakes)更是内容生产中的热门技术,在短视频、直播、视频会议、游戏、广告、军事等领域已得到了广泛应用。但具备高度欺骗性的深度伪造技术也引发了诸多争议,它进一步混淆了数字世界与真实世界边界,带来了相应的风险和挑战。 深度伪造技术的兴起
拿到神笔的马良,可以画物品、画动物、画食物,而且,这些画作都可以一秒钟从画面上出来,变成真实世界中存在的东西。
在人脸识别技术正在被广泛运用的今天,人脸攻击技术不断进化,攻击类型也在逐步增加,给人脸安全技术带来了诸多挑战,我们应该如何应对?
随着大数据时代的到来,个人信息安全问题日益严峻,基于图像处理的人脸识别和检测技术得到了广泛的应用。然而,目前人脸检测技术都是针对数量较小的人脸图像,随着大数据概念的深入,图像大数据处理将对人脸识别技术提出更高要求。在最原始的基于人脸识别系统中,基于当前拍摄的人脸照片与预先存储的人脸照片之间的比对,来进行身份验证。然而,当将被仿冒者本人的照片置于这种基于人脸照片比对的身份验证系统中的摄像头前时,这种基于人脸照片比对的身份验证系统可能通过用户身份验证。换言之,恶意用户可以使用被仿冒者的照片来进行恶意攻击(即,照片攻击),这种基于人脸照片比对的人脸识别系统不能抵抗照片攻击。于是,人脸活体检测技术应运而生。
什么?方案里没有人脸识别,看来你们的方案还是老旧的方案。上面就是客户给你的方案汇报一个总结。是不是很委屈,是不是很郁闷,你是不是想说,我们也不是人脸识别企业,为什么要懂这么多啊。
前段时间,AI圈子里面发生了一件比较有争议的事情。一位名为“将记忆深埋”程序员博主公开表示自己准备上线一个“拯救老实人”的人脸识别工具。
人脸识别成了近年火热的人工智能落地方向之一。简单地看来,人脸识别是一个验证身份的过程,所以后跟个人身份证打通也是理所应当。要判断画面上呈现的是不是一个真的人脸,途径和手段是可以非常多样化的。要验证是不是真正的人脸,光靠一个二维的模式识别,或者人脸特征点的对齐都是远远不够的,存在一定的局限性。
夏乙 安妮 编译整理 量子位 出品 | 公众号 QbitAI 输入一张语义地图—— 就能为你还原整个世界。 输入一张亲妈都认不出来的语义标注图—— 为你合成一张真实的人脸。 聪明的你可能已经发现,这个
AI 成为新基建风口模式下的一个重要选题,让人们对于 AI 的热情空前高涨。从一开始的烧钱阶段到今天的确定性发展,AI 一直渗透着人们的生活,从自动驾驶到人脸识别都是如此。其中,人脸识别技术应用较为广泛。
智能视频分析识别监管系统在安全管理中起着安全管家的功效,大幅提高了公司在生产安全管理里的安全指标。AI视频个人行为分析系统借助视频优化算法分析视频具体内容,根据获取视频里的关键信息、标识,产生相对应的警报时间和警报监管方式,大家能通过各种各样的方式迅速收到异常信息。AI依靠Cpu强劲的测算作用,视频个人行为分析系统快速分析视频界面里的海量信息,获得大家想要的违规警报信息内容。
在人脸识别应用中,很多场景能够获取某一个体的多幅人脸图像的集合(比如在监控视频中),使用人脸图像集来做识别,这个问题被称为基于模板的人脸识别(template-based face recognition)。
本文介绍了一种从语义图像生成逼真图像的方法,该方法基于Pix2Pix,并进行了改进。首先,使用条件生成对抗网络(cGAN)生成逼真的图像,然后使用多尺度鉴别器来提高生成图像的质量。最后,引入了实例级条件,在生成图像时为每个像素赋予一组实例条件,以使生成的图像更加真实。
视频ai智能分析边缘计算盒可以配备为在施工工地现场监测到违规事件时开启即时警报,并伴随時间的变化收集数据,将其展示为历史时间数据图表、图型或热点图。视频ai智能分析边缘计算盒与传统的的视频监管方式对比,传统式的视频监管方式 通常必须手动式分析很多的视频流,视频ai智能分析边缘计算盒可以协助工作员在必须付诸行动时过虑有关事情并发送报警。
大数据文摘作品 作者:龙牧雪 深度学习合成图像并不是什么新鲜事。谷歌自己就做过SketchRNN,能识别8条腿的猪有异常,输出4条腿的猪(戳这里看)。 不过这些都依赖于人类输入数据的指导。人类需要告诉模型,哪些输入图片是猪,模型才能从中总结规律。 昨天,谷歌DeepMind发出了一篇博文,介绍了其最新论文Synthesizing Programs for Images using Reinforced Adversarial Learning(大数据文摘公众号后台回复“图像”即可下载)。 谷歌使用一种名叫
一是杭州野生动物世界“为了方便消费者快速入园”,在今年 10 月将年卡系统从“指纹入园”升级为“人脸识别入园”,被消费者起诉。起诉者是浙江理工大学特聘副教授郭兵,他在五个月前办理了年卡,郭兵认为,“园区升级后的年卡系统进行人脸识别将收集他的面部特征等个人生物识别信息,该类信息属于个人敏感信息,一旦泄露、非法提供或者滥用,将极易危害包括原告在内的消费者人身和财产安全。”
导读:近日,浙江理工大学特聘副教授郭兵起诉杭州野生动物世界年卡系统采集人脸,已被杭州市富阳区人民法院正式受理。此案被称为“国内人脸识别第一案”。一直被忽视的互联网隐私终于被慢慢地重视起来。
王小新 编译 原文作者:Sumeet Agrawal 量子位 出品 | 公众号 QbitAI 生成对抗网络(GANs)是一种能“教会”计算机胜任人类工作的有趣方法。一个好的对手能让你成长更快,而GAN
本文“Face-To-Face Translation”是指的要建立这么一个系统:它能够自动地将说a语言的人的视频翻译成目标语言B,并实现唇同步。简单来说就是:视频中有一个人说话,将这个人说的英语实时的翻译成中文并且将说英语的嘴型也通过图像的方法翻译成中文的嘴型。
人脸识别技术与其他生物特征识别技术相比,在实际应用中具有天然独到的优势:通过摄像头直接获取,可以非接触的方式完成识别过程,方便快捷。目前已应用在金融、教育、景区、旅运、社保等领域,但方便的同时也带来了一些问题,易获取,使得人脸容易被一些人用照片、视频等方式进行复制,从而达到窃取盗用信息的目的。为了保障信息安全,人脸识别技术责无旁贷,而抗攻击,是其研究中必不可少的一环,其中,人脸活体检测就是技术的核心了。
目前用于人类生成相关的「可动画3D感知GAN」方法主要集中在头部或全身的生成,不过仅有头部的视频在真实生活中并不常见,全身生成任务通常不会控制人物的面部表情,并且很难提高生成质量。
付费电视服务在与运营商之外的第三方通过互联网提供(Over-The-Top,OTT)的视频点播(Video-on-Demand,VoD)服务的竞争中逐渐处于劣势,尽管电视服务运营商拥有海量的媒体内容,但是后者利用短视频和刷剧(binge-watching)的功能可以更好地迎合如今观众的需求。为了解决这个问题,一些电视服务运营商通过人工将线性的视频内容剪成视频点播的形式向用户提供简短的内容,但这通常不可行也不可扩展。而且研究表明,用户尽力去发现的新内容总是令人失望的。近些年来,机器学习算法尤其是深度学习因其在目标识别和语音识别任务中可以匹敌甚至超过专业人士的表现得到了极大的普及。
安全帽佩戴检测系统在监控摄像头可监控到的地区画面中自动检索施工工作人员是不是戴安全帽、反光衣,假如见到工作人员不戴安全帽、反光衣,安全帽佩戴检测系统将开展语音播报,纪录违纪行为。在工程建筑、电力安装工程、煤矿业、石油化工、化工企业等高危企业,可以预防重大事故的合理防止,不用人工手动操作进行,提升安全生产智能化系统管理效率。安全帽佩戴检测系统运用智能视频分析沿深度神经网络技术相结合,具备高精度、兼容强、特点可靠性强的特性。
许多人当听到“人工智能”、“机器学习”或者“bot”的时候,首先浮现在脑海当中的应当是科幻片中经常出现、未来感十足的既会走路又会说话的机器人。
更有意思的是,据英特尔表示,这个补丁在Geforce RTX 3090 GPU上,完成一次画质增强推理,只需要半秒钟的时间。
这两天专注介绍计算机视觉黑科技的52CV君发现一篇被AAAI2019录用的非常棒的复旦大学的文章!性能强悍到爆!
---- 新智元报道 编辑:Joey 【新智元导读】近日,谷歌的一名软件工程师研发了一项AI人脸识别技术,可识别二战大屠杀时期的老照片中的人脸,以后找寻失散多年的亲人要成为现实了? AI面部识别领域又开辟新业务了? 这次,是鉴别二战时期老照片里的人脸图像。 近日,来自谷歌的一名软件工程师Daniel Patt 研发了一项名为N2N(Numbers to Names)的 AI人脸识别技术,它可识别二战前欧洲和大屠杀时期的照片,并将他们与现代的人们联系起来。 用AI寻找失散多年的亲人 2016
在生物识别系统中,为防止恶意者伪造和窃取他人的生物特征用于身份认证,生物识别系统需具有活体检测功能,即判断提交的生物特征是否来自有生命的个体。一般生物特征的活体检测技术利用的是人们的生理特征,例如活体指纹检测可以基于手指的温度、排汗、导电性能等信息,人脸活体检测可以基于头部的移动、呼吸、红眼效应等信息,活体虹膜检测可以基于虹膜振颤特性、睫毛和眼皮的运动信息、瞳孔对可见光源强度的收缩扩张反应特性等。
如今,人脸识别已经走进了我们生活中的方方面面,拿起手机扫脸付账,扫描人脸完成考勤,刷脸入住酒店纷纷便利了我们的生活。而人脸识别里一项必不可少的技术就是人脸活体检测,即AI不但要确定这是“你”,还需要确定这是“真实存在的、活的你”。
本项目利用深度学习由文本生成人脸图像,除了结合 StackGAN 和 ProGAN,作者还参考了从文本到图像的研究,并修改为从文本合成人脸。
选自metaphysic.ai 作者:Martin Anderson 机器之心编辑部 看似「天衣无缝」的伪造技术,也是有漏洞的。 视频伪造是 Deepfake 技术最为主要的代表,其制作假视频的技术也被称为人工智能换脸(AI face swap)。一直以来,研究者发现 DeepFake 存在着这样一个漏洞:当伪造人脸头部转到 90 度时(侧脸 90 度),对方就能识别视频中的人脸是不是伪造的。 这是怎么回事呢?在最近的一项测试中,技术专家兼评论员 Bob Doyle 允许研究人员进行一些关于人脸伪造的测试,
人脸识别技术是近年来出现的一种基于人的脸部特征信息进行身份识别的生物特征识别技术。与其他生物识别技术相比较,人脸识别具有友好、简便、准确、经济及可扩展性良好等众多优势,可广泛应用于安全验证、监控、出入口控制等多个方面,目前人脸识别技术已经应用到门禁考勤,访客管理,巡更、会议签到、身份核验等场所。
人脸识别是一项热门的 计算机技术研究领域,它属于生物特征识别技术,是对 生物体(一般特指人)本身的生物特征来区分生物体个体。与其他生物识别技术相比较,人脸识别具有友好、简便、准确、经济及可扩展性良好等众多优势,可广泛应用于安全验证、监控、出入口控制等多个方面,目前人脸识别技术已经应用到门禁考勤,访客管理,巡更、会议签到、身份核验等场所。
机器之心报道 编辑:杜伟、陈萍 一张输入人脸图像,竟能生成多样化风格的动漫形象。伊利诺伊大学香槟分校的研究者做到了,他们提出的全新 GAN 迁移方法实现了「一对多」的生成效果。 在 GAN 迁移领域,研究人员可以构建一个以人脸图像为输入并输出人脸动漫形象的映射。相关的研究方法已经出现了很多,如腾讯微视此前推出的迪士尼童话脸特效等等。 在迁移过程中,图像的内容(content)部分可能会被保留,但风格(style)部分必须改变,这是因为同一张脸在动画中能以多种不同的方式表示。这意味着:迁移过程是一个一对多的映
虹膜是位于人眼表面黑色瞳孔和白色巩膜之间的环状区域,在红外光下呈现出丰富的纹理信息,如斑点、条纹、细丝、冠状、隐窝等细节特征。虹膜识别技术采用专用光学图像采集仪采集人眼虹膜图像,然后通过数字图像处理技术、模式识别和人工智能技术对采集到的虹膜图像进行处理、存储、比对,实现对人员身份的认证和识别。在众多的生物特征识别技术中,虹膜识别因为其超群的唯一性、稳定性和非侵犯性而具有特殊的优势。近年来,虹膜识别得到了来自学术界、产业界、政府和军队等的广泛关注。 指纹是人类手指末端指腹表皮上凹凸不平的纹
点击上方↑↑↑“OpenCV学堂”关注我来源:公众号 机器之心 授权 看似「天衣无缝」的伪造技术,也是有漏洞的。 视频伪造是 Deepfake 技术最为主要的代表,其制作假视频的技术也被称为人工智能换脸(AI face swap)。一直以来,研究者发现 DeepFake 存在着这样一个漏洞:当伪造人脸头部转到 90 度时(侧脸 90 度),对方就能识别视频中的人脸是不是伪造的。 这是怎么回事呢?在最近的一项测试中,技术专家兼评论员 Bob Doyle 允许研究人员进行一些关于人脸伪造的测试,期间研究人员采用
“刷脸”,作为一种个人身份鉴别技术,这些年在图像处理、深度学习等技术的护持下精度大幅提升,在LFW上,各大玩家在无限制条件下人脸验证测试(unrestricte)
之前看《你好李焕英》里,有一个表现手法非常让我印象深刻。就是一开始场景是黑白的,然后慢慢变成彩色的,从黑白到彩色的这个过程,让我有种「进入新的现实」的感觉。
下面这个代码是借鉴别人调用摄像头进行人脸检测的 然而竟然报错 cv2.error: OpenCV(4.2.0) C:\projects\opencv-python\opencv\modules\objdetect\src\cascadedetect.cpp 查阅资料 发现是分类器路径问题 如果用\在python中有转义作用 可以在前面加入r 取消转义 或者把\改成/ 完美解决
内容提要:「眼见为实」在 AI 技术面前已经失效了,换脸、对口型的技术层出不穷,效果越来越逼真。今天要介绍的 Wav2Lip 模型,只需一段原始视频与目标音频,就可将其合二为一。
本篇针对目前信安标委《基于可信环境的远程人脸识别认证系统技术要求》标准规范征集意见稿进行学习!
最近,韩国人工智能公司Pulse 9推出了一个完全由AI打造的韩国流行音乐女团,Eternity。Pulse 9通过该公司研发的“Deep Real”技术打造了11位AI女团成员,并发布了单曲MV“I’m Real”。该单曲在YouTube上的播放量达到67万。
还记得前些天风靡网络的FaceApp吗,它是利用AI算法的自拍应用,把人们上传的照片中的人脸变年轻或者老化。
大多数现有的图像到图像翻译框架——将一个域中的图像映射到另一个域的对应图像——都是基于监督学习的,即学习翻译函数需要两个域中对应的图像对。这在很大程度上限制了它们的应用,因为在两个不同的领域中捕获相应的图像通常是一项艰巨的任务。为了解决这个问题,我们提出了基于变分自动编码器和生成对抗性网络的无监督图像到图像翻译(UNIT)框架。所提出的框架可以在没有任何对应图像的情况下在两个域中学习翻译函数。我们通过结合权重共享约束和对抗性训练目标来实现这种学习能力。通过各种无监督图像翻译任务的可视化结果,我们验证了所提出的框架的有效性。消融研究进一步揭示了关键的设计选择。此外,我们将UNIT框架应用于无监督领域自适应任务,并取得了比基准数据集中的竞争算法更好的结果。
领取专属 10元无门槛券
手把手带您无忧上云