首页
学习
活动
专区
工具
TVP
发布

人脸活体检测实现流程及鉴别步骤

现有的人脸识别场景中,极易用照片、视频等方式复制人脸进而攻击,因此对合法用户人脸的假冒是人脸识别与认证系统安全的重要威胁,考虑到一旦虚假人脸攻击成功,极有可能对用户造成重大损失,因此势必需要为现有的人脸识别系统开发可靠...为了确保你是“活的你”,人脸活体检测通常包含几个鉴别步骤,比如眨眼判别:对于可以要求用户配合的应用系统,要求用户眨眼一到两次,人脸识别系统会根据自动判别得到的眼睛的张合状态的变化情况来区分照片和人脸;或者嘴部张合判别...3.活体算法检测:判断用户是否为正常操作,通过指定用户做随机动作(摇头、点头、凝视、眨眼、上下移动手机),防止视频攻击、非正常动作的攻击。...人脸活体检测通常包含的几个鉴别步骤,比如:1. 眨眼判别:对于可以要求用户配合的应用系统,要求用户眨眼一到两次,人脸活体检测系统会根据自动判别得到的眼睛的张合状态的变化情况来区分照片和人脸;2....基于人脸识别场景中的防欺诈解决方案,人脸活体检测技术可以有效阻挡PS换脸、视频、三维人脸模型、高清人像照片等各种不同类型的攻击。

1.8K00

如何用 AI 来鉴别假新闻

那么能不能用AI 来鉴别假新闻呢?又该如何鉴别呢?...麻省理工学院计算机科学与人工智能实验室(CSAIL)在其官网发布了一则新闻,宣称该实验室与卡塔尔计算研究所(Qatar Computing Research Institute)的研究人员合作,已经研究出一种可以鉴别信息来源准确性和个人政治偏见的...而Facebooky也一度深陷假新闻的泥淖,已经开始尝试使用“识别虚假新闻”的人工智能工具,并于近期收购了总部位于伦敦的初创公司Bloomsbury AI,以帮助其鉴别消除假新闻。...不过,无论最终鉴别假新闻和个人偏见的解决方案是AI系统还是人工,抑或两者兼而有之,假新闻被彻底消除的那一天都不会立刻到来。

68020
您找到你想要的搜索结果了吗?
是的
没有找到

如何快速搭建智能人脸识别系统

基于人脸识别的智能人脸识别技术就是这样一种安全措施,本文我们将研究如何利用VGG-16的深度学习和迁移学习,构建我们自己的人脸识别系统。...简介 本项目构建的人脸识别模型将能够检测到授权所有者的人脸并拒绝任何其他人脸,如果面部被授予访问权限或访问被拒绝,模型将提供语音响应。...搭建方法 首先,我们将研究如何收集所有者的人脸图像。然后,如果我们想添加更多可以访问我们系统的人,我们将创建一个额外的文件夹。...elif key%256 == 113: break capture.release()cv2.destroyAllWindows() 我们确保代码仅在网络摄像头被捕获和激活时运行,然后将捕获视频并返回帧...退出程序后,我们将从网络摄像头中释放视频捕获并销毁 cv2 图形窗口。 调整图像大小 在下一个代码块中,我们将相应地调整图像大小。

1.2K20

AI人脸检测EasyCVR视频融合平台如何设置视频流全局转码?

在此前的文章中,我们已经为大家介绍过EasyCVR平台的自动转码功能,该功能具体是指可以在不改变摄像机设置的情况下实现视频流转码播放,如果摄像机的视频编码格式是H.265,利用转码功能可以转换为H.264...在我们很多的项目中,用户对视频流的转码需求也很多(H.265视频流转H.264视频流)。...除此之外,EasyCVR平台也支持通过接口配置通道转码,具体可以查看这篇文章:《视频融合平台EasyCVR如何通过接口配置通道转码?》。...EasyCVR视频融合平台基于云边端协同架构,能支持海量视频的轻量化接入与汇聚管理,借助大数据分析的决策判断,为摄像头、网络存储设备、智能终端、视频监控平台等提供一体化的视频接入、分发、存储、处理等能力...近期我们正在积极研发基于AI视频智能分析的云边端融合智能协同平台。

1.1K40

解读 | 生成人脸修复模型:同时使用两个鉴别器,直接合成逼真人脸

与之前很多其他工作不同,针对人脸修复任务,这篇论文的作者同时使用了两个鉴别器来构建整个模型,因此不论是局部图像还是整个图像,看上去都更加逼真。 2. 方法 2.1 模型结构 ?...局部鉴别器被用来判别图像缺失区域中合成的图像补丁是否真实。整体鉴别器则用来判别整张图像的真实性。这两个鉴别器的架构相似于论文《用深度卷积生成对抗网络来进行非监督表征学习》中的所述架构。...两个鉴别器的损失函数的不同之处在于:局部鉴别器的损失函数 (L_a1) 仅仅反向传播图像缺失区域的损失梯度,而整体鉴别器的损失函数 (L_a2) 反向传播整个图像的损失梯度。...结论 这个基于生成对抗网络的模型具有两个鉴别器和一个语义正则化网络,能够处理人脸修复任务。它能够在随机噪声中成功地合成缺失的人脸部分。 6....改进建议 这个模型一个局限是并不能处理一些未对齐的人脸,可以增加一个面部变形的网络来将输入的人脸规范化。

2.8K80

如何搭建多nginx实现视频分流?

大家都知道,如果一个服务器接入大量的进程或者任务,很可能会造成卡顿,比如在使用EasyNVR进行视频直播分发时,nginx接入传输量比较大的视频流,会导致PC端的播放卡顿。...在开启按需直播后,EasyNVR服务就会自动根据视频的播放需求来传输视频,以减轻nginx的压力。...但是在非按需播放的通道较多的情况下,单nginx处理比较仍然会放缓,解决此种问题,就是需要搭建多nginx来实现分流。...搭建方式: 1.先将服务关闭(ServiceUninstall-EasyNVR.exe),随后复制nginx这个目录如下图(录像可以不复制): 2.复制完成后进入该目录内将nginx.exe的名称更改...5.在任务管理器或者Linux内的top命令都可以看到启动的多nginx,随后查看视频就会进行通道分发。

1.3K30

如何快速搭建智能人脸识别系统(附代码)

基于人脸识别的智能人脸识别技术就是这样一种安全措施,本文我们将研究如何利用VGG-16的深度学习和迁移学习,构建我们自己的人脸识别系统。...简介 本项目构建的人脸识别模型将能够检测到授权所有者的人脸并拒绝任何其他人脸,如果面部被授予访问权限或访问被拒绝,模型将提供语音响应。...搭建方法 首先,我们将研究如何收集所有者的人脸图像。然后,如果我们想添加更多可以访问我们系统的人,我们将创建一个额外的文件夹。...key%256 == 113: break capture.release() cv2.destroyAllWindows() 我们确保代码仅在网络摄像头被捕获和激活时运行,然后将捕获视频并返回帧...退出程序后,我们将从网络摄像头中释放视频捕获并销毁 cv2 图形窗口。 调整图像大小 在下一个代码块中,我们将相应地调整图像大小。

1.9K10

深度学习之视频人脸识别系列三:人脸表征

作者 | 东田应子 编辑 | 安可 出品 | 磐创AI技术团队 【磐创AI导读】本文是深度学习之视频人脸识别系列的第三篇文章,介绍人脸表征相关算法和论文综述。...在本系列第一篇文章里我们介绍了人脸识别领域的一些基本概念,分析了深度学习在人脸识别的基本流程,并总结了近年来科研领域的研究进展,最后分析了静态数据与视频动态数据在人脸识别技术上的差异;在第二篇文章中介绍了人脸检测与对齐的相关算法...一、人脸表征 把人脸图像通过神经网络,得到一个特定维数的特征向量,该向量可以很好地表征人脸数据,使得不同人脸的两个特征向量距离尽可能大,同一张人脸的两个特征向量尽可能小,这样就可以通过特征向量来进行人脸识别...在该人脸识别模型中分为四个阶段:人脸检测 => 人脸对齐 => 人脸表征 => 人脸分类,在LFW数据集中可以达到97.00%的准确率。...,即:识别、验证、搜索等问题都可以放到特征空间里做,需要专注解决的仅仅是如何人脸更好的映射到特征空间。

1.3K30

视频人脸检测——OpenCV版(三)

视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——OpenCV版(二)》 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置,...把处理的图片逐帧绘制给用户,用户看到的效果就是视频人脸检测。...视频人脸识别 这个时候,用到了上一节的《图片人脸检测——OpenCV版(二)》 把人脸识别的代码封装成方法,代码如下: def discern(img): gray = cv2.cvtColor...x, y, w, h = faceRect cv2.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 2) # 框出人脸...cap.release() # 释放摄像头 cv2.destroyAllWindows() # 释放窗口资源 完整的代码如下: # -*- coding:utf-8 -*- # OpenCV版本的视频检测

1.3K30

如何搭建一个视频采集网站

详细的我也不清楚 【所需材料】 网站空间、域名、建站源码、采集插件、解析插件 可以采用海洋CMS、苹果CMS或者我以前介绍的两个CMS https://www.hishare.site/650.html 【第一步 搭建网站...】 把源码上传到网站空间,设置好域名解析,完成网站的搭建 【第二步 采集数据】 一般网站程序自带采集插件,也可以去淘宝购买采集插件。...采集的意思就是把各大视频网站的视频数据抓取到你的网站,电影介绍,海报啊,分类啊,评分啊之类信息。...【第三步 设置视频解析】 数据采集完成但是你没有办法让这些视频直接在你的网站播放,这就需要视频解析了,一般解析插件不仅可以解析普通视频也可以解析VIP视频。购买的,才靠谱。...推荐CK视频解析 http://www.ckmov.com/ 【第四步 投放广告】 注册广告联盟,获取广告代码投放广告,实现盈利。

11.3K70

视频人脸检测——Dlib版(六)

前言 Dlib的人脸识别要比OpenCV精准很多,一个是模型方面的差距,在一方面和OpenCV的定位有关系,OpenCV是一个综合性的视觉处理库,既然这么精准,那就一起赶快来看吧。...视频人脸检测是图片识别的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——Dlib版(四)》 除了人脸识别用的是Dlib外,还是用OpenCV读取摄像头和处理图片(转为灰色),所以给出相关的文档...技术实现 有了OpenCV的视频人脸检测,Dlib也大致相同除了视频识别器模型的声明和使用不同,具体的细节请参考,视频人脸检测——OpenCV版(三) 那篇已经讲的很细致了,在这就不具体叙述了。....waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() 那么,OpenCV和Dlib的视频识别对比...,有两个地方是不同的: 1.Dlib模型识别的准确率和效果要好于OpenCV; 2.Dlib识别的性能要比OpenCV差,使用视频测试的时候Dlib有明显的卡顿,但是OpenCV就好很多,基本看不出来;

64120

视频人脸检测——OpenCV版(三)

视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——OpenCV版(二)》 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置,把处理的图片逐帧绘制给用户...,用户看到的效果就是视频人脸检测。...视频人脸识别 这个时候,用到了上一节的《图片人脸检测——OpenCV版(二)》 把人脸识别的代码封装成方法,代码如下: def discern(img): gray = cv2.cvtColor...x, y, w, h = faceRect cv2.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 2) # 框出人脸...cap.release() # 释放摄像头 cv2.destroyAllWindows() # 释放窗口资源 完整的代码如下: # -*- coding:utf-8 -*- # OpenCV版本的视频检测

1.2K70

视频人脸检测——Dlib版(六)

往期目录 视频人脸检测——Dlib版(六) OpenCV添加中文(五) 图片人脸检测——Dlib版(四) 视频人脸检测——OpenCV版(三) 图片人脸检测——OpenCV版(二) OpenCV...环境搭建(一) 更多更新,欢迎访问我的github:https://github.com/vipstone/faceai 前言 Dlib的人脸识别要比OpenCV精准很多,一个是模型方面的差距,在一方面和...视频人脸检测是图片识别的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——Dlib版(四)》 除了人脸识别用的是Dlib外,还是用OpenCV读取摄像头和处理图片(转为灰色),所以给出相关的文档...技术实现 有了OpenCV的视频人脸检测,Dlib也大致相同除了视频识别器模型的声明和使用不同,具体的细节请参考,视频人脸检测——OpenCV版(三) 那篇已经讲的很细致了,在这就不具体叙述了。...,有两个地方是不同的: 1.Dlib模型识别的准确率和效果要好于OpenCV; 2.Dlib识别的性能要比OpenCV差,使用视频测试的时候Dlib有明显的卡顿,但是OpenCV就好很多,基本看不出来;

1.1K70

深度学习之视频人脸识别系列四:人脸表征-续

作者 | 别看我只是一只洋 编辑 | 安可 出品 | 磐创AI技术团队 【磐创AI导读】本文是深度学习之视频人脸识别系列的第四篇文章,接着第三篇文章,继续介绍人脸表征相关算法和论文综述。...在本系列第一篇文章里我们介绍了人脸识别领域的一些基本概念,分析了深度学习在人脸识别的基本流程,并总结了近年来科研领域的研究进展,最后分析了静态数据与视频动态数据在人脸识别技术上的差异;在第二篇文章中介绍了人脸检测与对齐的相关算法...一、人脸表征 把人脸图像通过神经网络,得到一个特定维数的特征向量,该向量可以很好地表征人脸数据,使得不同人脸的两个特征向量距离尽可能大,同一张人脸的两个特征向量尽可能小,这样就可以通过特征向量来进行人脸识别...CosFace使用mtcnn进行人脸检测与对齐,人脸表征训练模型使用基于residual units 64层卷积网络的Sphere Face,在5M的训练集上训练,在LFW数据集上测试,精度达到99.73%...三、总结 本期文章主要介绍人脸表征相关算法和论文综述,人脸检测、对齐、特征提取等这些操作都可以在静态数据中完成,下一期将给大家介绍在视频数据中进行人脸识别的另一个重要的算法,视频人脸跟踪的概念与方法。

1.8K10
领券