现有的人脸识别场景中,极易用照片、视频等方式复制人脸进而攻击,因此对合法用户人脸的假冒是人脸识别与认证系统安全的重要威胁,考虑到一旦虚假人脸攻击成功,极有可能对用户造成重大损失,因此势必需要为现有的人脸识别系统开发可靠 为了确保你是“活的你”,人脸活体检测通常包含几个鉴别步骤,比如眨眼判别:对于可以要求用户配合的应用系统,要求用户眨眼一到两次,人脸识别系统会根据自动判别得到的眼睛的张合状态的变化情况来区分照片和人脸;或者嘴部张合判别 3.活体算法检测:判断用户是否为正常操作,通过指定用户做随机动作(摇头、点头、凝视、眨眼、上下移动手机),防止视频攻击、非正常动作的攻击。 人脸活体检测通常包含的几个鉴别步骤,比如:1. 眨眼判别:对于可以要求用户配合的应用系统,要求用户眨眼一到两次,人脸活体检测系统会根据自动判别得到的眼睛的张合状态的变化情况来区分照片和人脸;2. 基于人脸识别场景中的防欺诈解决方案,人脸活体检测技术可以有效阻挡PS换脸、视频、三维人脸模型、高清人像照片等各种不同类型的攻击。
与之前很多其他工作不同,针对人脸修复任务,这篇论文的作者同时使用了两个鉴别器来构建整个模型,因此不论是局部图像还是整个图像,看上去都更加逼真。 2. 方法 2.1 模型结构 ? 局部鉴别器被用来判别图像缺失区域中合成的图像补丁是否真实。整体鉴别器则用来判别整张图像的真实性。这两个鉴别器的架构相似于论文《用深度卷积生成对抗网络来进行非监督表征学习》中的所述架构。 两个鉴别器的损失函数的不同之处在于:局部鉴别器的损失函数 (L_a1) 仅仅反向传播图像缺失区域的损失梯度,而整体鉴别器的损失函数 (L_a2) 反向传播整个图像的损失梯度。 结论 这个基于生成对抗网络的模型具有两个鉴别器和一个语义正则化网络,能够处理人脸修复任务。它能够在随机噪声中成功地合成缺失的人脸部分。 6. 改进建议 这个模型一个局限是并不能处理一些未对齐的人脸,可以增加一个面部变形的网络来将输入的人脸规范化。
云点播为您提供媒资管理+短视频SDK+小程序插件+超级播放器等丰富的产品能力,1元起快速体验长短视频一体化方案,购买点播流量包即赠28天短视频 License 基础版 使用权+1年视频播放 License 使用权
短信0.029元/条起,CDN 0.02元/GB起直播/点播/TRTC/IM等套餐包特惠0.1折起更有新品云呼叫中心/媒体处理/视频播放License等1元起更有购后抽奖活动,100%中奖,多重好礼等您赢取敬请前往活动 :https://mc.tencent.com/Ro6b9IQ9↓ 长按图片识别二维码前往会场 ↓腾讯云音视频在音视频领域已有超过21年的技术积累,持续支持国内90%的音视频客户实现云上创新,独家具备 RT-ONE™ 全球网络,在此基础上,构建了业界最完整的 PaaS 产品家族,并通过腾讯云视立方 RT-Cube™ 提供All in One 的终端SDK,助力客户一键获取众多腾讯云音视频能力。 腾讯云音视频为全真互联时代,提供坚实的数字化助力。
11.11智惠云集,音视频通信产品选购攻略来喽~ 活动时间:11月1日—11月30日 短信套餐包新用户专享18.8元/1000条,TRTC/直播/点播套餐包低至9元,IM续费7.5折起,更有直播秒杀和技术干货分享 腾讯云音视频在音视频领域已有超过21年的技术积累,持续支持国内90%的音视频客户实现云上创新,独家具备 RT-ONE™ 全球网络,在此基础上,构建了业界最完整的 PaaS 产品家族,并以 All in 腾讯云音视频为全真互联网时代,提供坚实的数字化助力。
作者 | 东田应子 编辑 | 安可 出品 | 磐创AI技术团队 【磐创AI导读】本文是深度学习之视频人脸识别系列的第三篇文章,介绍人脸表征相关算法和论文综述。 在本系列第一篇文章里我们介绍了人脸识别领域的一些基本概念,分析了深度学习在人脸识别的基本流程,并总结了近年来科研领域的研究进展,最后分析了静态数据与视频动态数据在人脸识别技术上的差异;在第二篇文章中介绍了人脸检测与对齐的相关算法 一、人脸表征 把人脸图像通过神经网络,得到一个特定维数的特征向量,该向量可以很好地表征人脸数据,使得不同人脸的两个特征向量距离尽可能大,同一张人脸的两个特征向量尽可能小,这样就可以通过特征向量来进行人脸识别 在该人脸识别模型中分为四个阶段:人脸检测 => 人脸对齐 => 人脸表征 => 人脸分类,在LFW数据集中可以达到97.00%的准确率。 三角化后的人脸变为有深度的3D三角网 f. 将三角网做偏转,使人脸的正面朝前。 g. 最后放正的人脸 h.
条起,CDN0.06元/GB起 直播/点播/TRTC/IM/媒体处理套餐包0.01元起 云呼叫中心客服座席89元/月/座席折起 IM云端审核上新体验低至1元 全线特惠2.7折起 腾讯云音视频在音视频领域已有超过 21年的技术积累,持续支持国内90%的音视频客户实现云上创新,独家具备 RT-ONE™ 全球网络,在此基础上,构建了业界最完整的 PaaS 产品家族,并通过腾讯云视立方 RT-Cube™ 提供All in One 的终端SDK,助力客户一键获取众多腾讯云音视频能力。 腾讯云音视频为全真互联时代,提供坚实的数字化助力。
视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——OpenCV版(二)》 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置, 把处理的图片逐帧绘制给用户,用户看到的效果就是视频的人脸检测。 视频的人脸识别 这个时候,用到了上一节的《图片人脸检测——OpenCV版(二)》 把人脸识别的代码封装成方法,代码如下: def discern(img): gray = cv2.cvtColor x, y, w, h = faceRect cv2.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 2) # 框出人脸 cap.release() # 释放摄像头 cv2.destroyAllWindows() # 释放窗口资源 完整的代码如下: # -*- coding:utf-8 -*- # OpenCV版本的视频检测
前言 Dlib的人脸识别要比OpenCV精准很多,一个是模型方面的差距,在一方面和OpenCV的定位有关系,OpenCV是一个综合性的视觉处理库,既然这么精准,那就一起赶快来看吧。 视频人脸检测是图片识别的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——Dlib版(四)》 除了人脸识别用的是Dlib外,还是用OpenCV读取摄像头和处理图片(转为灰色),所以给出相关的文档 技术实现 有了OpenCV的视频人脸检测,Dlib也大致相同除了视频识别器模型的声明和使用不同,具体的细节请参考,视频人脸检测——OpenCV版(三) 那篇已经讲的很细致了,在这就不具体叙述了。 .waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() 那么,OpenCV和Dlib的视频识别对比 ,有两个地方是不同的: 1.Dlib模型识别的准确率和效果要好于OpenCV; 2.Dlib识别的性能要比OpenCV差,使用视频测试的时候Dlib有明显的卡顿,但是OpenCV就好很多,基本看不出来;
视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——OpenCV版(二)》 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置,把处理的图片逐帧绘制给用户 ,用户看到的效果就是视频的人脸检测。 视频的人脸识别 这个时候,用到了上一节的《图片人脸检测——OpenCV版(二)》 把人脸识别的代码封装成方法,代码如下: def discern(img): gray = cv2.cvtColor x, y, w, h = faceRect cv2.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 2) # 框出人脸 cap.release() # 释放摄像头 cv2.destroyAllWindows() # 释放窗口资源 完整的代码如下: # -*- coding:utf-8 -*- # OpenCV版本的视频检测
往期目录 视频人脸检测——Dlib版(六) OpenCV添加中文(五) 图片人脸检测——Dlib版(四) 视频人脸检测——OpenCV版(三) 图片人脸检测——OpenCV版(二) OpenCV 视频人脸检测是图片识别的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——Dlib版(四)》 除了人脸识别用的是Dlib外,还是用OpenCV读取摄像头和处理图片(转为灰色),所以给出相关的文档 技术实现 有了OpenCV的视频人脸检测,Dlib也大致相同除了视频识别器模型的声明和使用不同,具体的细节请参考,视频人脸检测——OpenCV版(三) 那篇已经讲的很细致了,在这就不具体叙述了。 .waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() 那么,OpenCV和Dlib的视频识别对比 ,有两个地方是不同的: 1.Dlib模型识别的准确率和效果要好于OpenCV; 2.Dlib识别的性能要比OpenCV差,使用视频测试的时候Dlib有明显的卡顿,但是OpenCV就好很多,基本看不出来;
作者 | 别看我只是一只洋 编辑 | 安可 出品 | 磐创AI技术团队 【磐创AI导读】本文是深度学习之视频人脸识别系列的第四篇文章,接着第三篇文章,继续介绍人脸表征相关算法和论文综述。 在本系列第一篇文章里我们介绍了人脸识别领域的一些基本概念,分析了深度学习在人脸识别的基本流程,并总结了近年来科研领域的研究进展,最后分析了静态数据与视频动态数据在人脸识别技术上的差异;在第二篇文章中介绍了人脸检测与对齐的相关算法 一、人脸表征 把人脸图像通过神经网络,得到一个特定维数的特征向量,该向量可以很好地表征人脸数据,使得不同人脸的两个特征向量距离尽可能大,同一张人脸的两个特征向量尽可能小,这样就可以通过特征向量来进行人脸识别 CosFace使用mtcnn进行人脸检测与对齐,人脸表征训练模型使用基于residual units 64层卷积网络的Sphere Face,在5M的训练集上训练,在LFW数据集上测试,精度达到99.73% 三、总结 本期文章主要介绍人脸表征相关算法和论文综述,人脸检测、对齐、特征提取等这些操作都可以在静态数据中完成,下一期将给大家介绍在视频数据中进行人脸识别的另一个重要的算法,视频人脸跟踪的概念与方法。
-- 视频摄像头 --> <! 、实时摄像头人脸识别、视频文件人脸识别 * @Description: OpenCV-4.1.1 测试文件 * @date: 2019年8月19日 17:17:48 * @version: V-1.0.0 ,识别成功保存图片到本地 getVideoFromCamera(); // 2- 从本地视频文件中识别人脸 // getVideoFromFile(); Mat video 中 HighGui.imshow("本地视频识别人脸", getFace(video));//3 显示图像 index=HighGui.waitKey : 2- 测试本地视频识别人脸 3- 测试本地图片人脸识别 4- 测试本地2张图片人脸的相似度 完结。
CDN &音视频通信产品火热售卖中,CDN 0.06元/GB起,短信 0.03元/条起,直播/点播/TRTC/IM 等套餐包 0.7折起戳此前往:https://mc.tencent.com/begY7IzG
问题描述: 人脸检测解决的问题为给定一张图片,输出图片中人脸的位置,即使用方框框住人脸,输出方框的左上角坐标和右下角坐标或者左上角坐标和长宽。 算法难点包括:人脸大小差异、人脸遮挡、图片模糊、角度与姿态差异、表情差异等。 第三阶段:与第二阶段类似,最终网络输出人脸框坐标、关键点坐标和人脸分类(是人脸或不是)。如下图所示: ? 二、人脸对齐(部分参考于GraceDD的博客文章) 人脸对齐通过人脸关键点检测得到人脸的关键点坐标,然后根据人脸的关键点坐标调整人脸的角度,使人脸对齐,由于输入图像的尺寸是大小不一的,人脸区域大小也不相同 ,下一期我给大家介绍一下人脸表征的相关算法,即通过深度学习提取人脸特征,通过比较人脸特征进行人脸识别与验证。
下载HAAR与LBP数据 2. opencv相关知识 二、python+opencv实现人脸检测 1. 图像单人脸检测 2. 图像多人脸检测 3. 视频中人脸检测 4. 视频中人脸检测 # -*- coding: UTF-8 -*- """ @Author :叶庭云 @公众号 :修炼Python @CSDN :https://yetingyun.blog.csdn.net / """ import cv2 # 加载视频 cap = cv2.VideoCapture('test.mp4') # 创建一个级联分类器 加载一个.xml分类器文件 它既可以是Haar特征也可以是 /face_detection/haarcascades/haarcascade_frontalface_default.xml') while True: # 读取视频片段 ret, 自己进行简单测试时也会发现,人物动作、视频中镜头切换过快、背景变化等因素,可能会造成对视频中人脸检测不准确。 4.
一位名为“将记忆深埋”程序员博主公开表示自己准备上线一个“拯救老实人”的人脸识别工具。 ? 接下来是重点:这个工具通过机器学习的方式把羞羞网站的人脸数据和各大社交媒体的人脸数据交叉对比,鉴别那些出现在羞羞视频里的“退休小姐姐”。 一来没有任何证据佐证它的识别率,由始至终全凭博主一面之词;二是即便识别率高达99%,剩余1%造成的误伤也是极其致命的;再者网上存在着很多偷拍视频,把“被偷拍”等同于“从事羞羞事业”,从事实逻辑上也明显不通 页面上诸如“专为保护老实人而生”、“想知道TA拍过的照片和视频吗”的挑逗暗示,则进一步放大的窥私心理。再加上绿得发黑的页面背景,从视觉上强化了心理冲击,把持不住的就放手一试了。 一进入页面,当头就是“人脸定位、智能模拟、数据对比”三个响当当的技术大棒,给你营造一种专业的错觉。 在进行到所谓的“人脸解码”和“智能匹配”阶段,页面上则是事无巨细地把整个过程和你演示了一遍。
下载HAAR与LBP数据 2. opencv相关知识 二、python+opencv实现人脸检测 1. 图像单人脸检测 2. 图像多人脸检测 3. 视频中人脸检测 4. 视频中人脸检测 import cv2 # 加载视频 cap = cv2.VideoCapture('test.mp4') # 创建一个级联分类器 加载一个.xml分类器文件 它既可以是Haar特征也可以是 /face_detection/haarcascades/haarcascade_frontalface_default.xml') while True: # 读取视频片段 ret, 自己进行简单测试时也会发现,人物动作、视频中镜头切换过快、背景变化等因素,可能会造成对视频中人脸检测不准确。 4. /face_detection/haarcascades/haarcascade_frontalface_default.xml') while True: # 读取视频片段 flag
采用近红外光源照射人脸,通过采集人脸在近红外光源下的图像视频进行人脸肤质材料的分析,从而判定是否为活体。 一次性鉴别机制 应防止与人脸识别身份鉴别有关的鉴别数据的重用。 例如采用近红外光源照射人脸,通过采集人脸在近红外光源下的图像视频进行人脸肤质材料的分析,从而判定是否为活体。 :打印的普通人脸照片、纸质高清人脸照片、手机屏幕重放的人脸照片攻击); 防纸质面具伪造:应能检测或防止使用绝大多数人脸纸质面具的仿冒行为; 防视频伪造:应能检测或防止使用拼接、替换、翻拍视频进行伪造 ; 防人脸CG合成伪造:应能检测或防止使用CG技术将单张或多张人脸图像合成人脸视频或3D人脸模型进行伪造; 防假体面具伪造:应能检测或防止使用绝大多数人脸3D假体面具(树脂面具、硅胶面具)的仿冒行为
鉴于此,我们决定采用 Xilinx 的 PYNQ-Z2 开发板,将 FPGA 高度并行化的特点与人工智能安全相结合,设计了一种具有实时人脸伪造能力的视频采集设备。 如果利用在会议视频中,可以协助会议平台完善对参会者的身份验证的系统,防止出现利用参会者的照片、视频信息冒名顶替的行为。 最后将处理结果返回到上位机终端,实现真假人脸的转换。 图像处理算法部分说明: 首先进行帧截取,将动态视频流转换成静态帧。通过锚框将全身人像的人脸部分截取出来,再通过人脸特征检测提取出人脸的特征。 然后采用泊松融合或者前后景+边缘膨胀的方式将人脸还原到静态图片帧(具体采用哪种取决于算力与实时性的要求),最终将静态图片帧还原到视频流中。 2.3 图像处理算法介绍 2.3.1 视频流接入的设计 考虑到可能的不同情境,我们为此设计了两种视频流的接入方式。
识别图中二维码或点击文末「阅读原文」,直达大促会场 腾讯云音视频在音视频领域已有超过21年的技术积累,持续支持国内90%的音视频客户实现云上创新,独家具备 RT-ONE™ 全球网络,在此基础上 ,构建了业界最完整的 PaaS 产品家族,并通过腾讯云视立方 RT-Cube™ 提供All in One 的终端SDK,助力客户一键获取众多腾讯云音视频能力。 腾讯云音视频为全真互联时代,提供坚实的数字化助力。
腾讯云神图·人脸融合通过快速精准地定位人脸关键点,将用户上传的照片与特定形象进行面部层面融合,使生成的图片同时具备用户与特定形象的外貌特征,支持单脸、多脸、选脸融合,满足不同的营销活动需求……
扫码关注腾讯云开发者
领取腾讯云代金券