展开

关键词

2019上海文化|2019上海文具|2019上海文化用品

2019第113届中国文化用品商品交易会(2019上海文化|2019上海文具|2019上海文化用品) 时间:2019年6月12-14日 地址:上海新国际博览中心 主办单位:高百赢展览( 上海)有限公司 支持单位:中国百货商业协会 展会规模:4.8万平方米(E1-E4) 参展商家:900多家 参观人数:4.5万人次 参展咨询:张丽 135 1211 9684 在线QQ:1959838261

31900

2019年上海文具

2019第113届中国文化用品商品交易会 时间:2019年6月12-14日 地址:上海新国际博览中心 主办单位:高百赢展览(上海)有限公司 支持单位:中国百货商业协会 展会规模:4.8万平方米(E1-E4

21250
  • 广告
    关闭

    人脸识别限时特惠,10万次资源包仅需9.9元!!

    基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    042|CeMAT上海物流2019之我见

    一年一度的汉诺威上海物流Cemat Asia又开始了,和往年一样,今年我也去上海CeMat Asia参观学习了两天,所以在此和大家一起分享一下今年的CeMat之我见。 ? 比如重型的四向穿梭车今年在展会上看到了很多家公司都展出了这款产品,有老牌生产厂家哥伦布,上海韬谱物流,南京音飞,另外也看到新的同类产品,上海隆链,湖北普罗格,上海精星,上海快仓,安徽驿星等公司都有四向穿梭车产品展出 ---- 集成软件展现的不多 每年的CeMat,更确切的说应该是仓储物流设备,为了更直观的展现自己的实力,各大厂家都尽量将自己的硬件设备摆到展位上供大家参观交流。 ?

    20720

    2018上海信息通信技术

    2018第20届中国国际工业博览会-信息与通信技术应用 时间:2018年9月19-23日 地点:国家会展中心(上海) 主办:国家发改委、商务部、工信部、科技部、 中科院、中国工程院、中国贸促会、上海市人民政府、联合国工业发展组织 承办:东浩兰生(集团)有限公司 协办单位:中国信息通信研究院,工业互联网产业联盟 支持单位:上海市通信制造业行业协会,上海市物联网行业协会 ,上海市信息安全行业协会,上海市交通电子行业协会 关于信息与通信技术应用(ICTS) 信息与通信技术应用(ICTS),作为中国国际工业博览会旗下专业之一,以信息和通信技术(ICT)在工业和商业领域中的创新融合与应用为主要内容 ,上海兆芯,上海固高欧辰智能,普华软件,上海顶逸,海尔数字,东方国信,上海菱威,上海兆芯,管易云等。 (集团)有限公司 中国国际工业博览会信息与通信技术应用业务部: 地址:上海市光复路757号五矿大厦13楼 张丽:135 1211 9684 微信号:expo666888 E-mail

    35650

    人脸识别

    降低计算强度 face_cascade = cv2.CascadeClassifier('d:\haarcascades\haarcascade_frontalface_alt.xml') # 探测人脸 # 根据训练的数据来对新图片进行识别的过程。 ,其他可以不写   scaleFactor= 1.01, #控制金字塔层数,通常范围1.01~1.5 参数越小,层数越多,结果越精确   minNeighbors = 1, #为5表示有5次重叠才认为人脸存在   minSize = (1,1),#寻找人脸的最小区域 ) # 处理人脸探测的结果 print ("{0}".format(len(faces))) for(x,y,w,h) in faces:

    1.1K10

    基于OpenMV的人脸识别,支持人脸注册、人脸检测、人脸识别

    1061700625/OpenMV_Face_Recognition ''' >> author: SXF >> email: songxf1024@163.com >> description: 用LBP特征进行人脸识别 ,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It = 0: debug(res) return 1 def match(d0): # 人脸识别 dir_lists = os.listdir( ,但由于SD卡内无文件,无法匹配人脸 ? 按下F1按键,进入人脸注册模式,连续拍5张照存入SD卡(拍摄时绿灯快闪50ms,拍摄完绿灯闪1000ms) ? 再识别,可完成人脸识别(红灯闪1000ms)。

    1.2K30

    人脸识别

    1.人脸识别的难点 用户配合度 相似性 易变形 2.人脸识别的评测方法 LFW数据集(Labeled Faces in the wild):该数据库工有13233幅图像,其中5749个人,1680人有两幅及以上的图像 该数据库采集的是自然条件下人脸图片,目的是提高自然条件下人脸识别的精度。

    1.5K90

    人脸图像识别(python人脸识别技术)

    python人脸识别 人脸识别的崛起 什么是人脸识别 人脸识别技术的应用和发展 python人脸识别 导入库 实现代码 人脸识别的崛起 什么是人脸识别 人脸识别是将采集到的数据信息,根据人脸特征信息进行比对 不过肯定的一点是,你的人脸识别首先要将人脸转化为计算机可以识别的数据,人脸识别其实就是计算机方面的数据识别人脸识别技术的应用和发展 谈到应用,我的第一映像就是手机上的人脸识别解锁,目前在学校公寓里面也有人脸识别的机器,我记得首先是收集了我们学生们的照片,应该是存入数据库的,我们学生的信息,包括学号,以及所在系等等 学生在进入公寓时需要进行人脸识别,机器会进行识别。系统有两种识别方式,一是识别人像,二是进行刷卡,刷卡会将自己的信息读取,会与数据库的信息对比,也是一种识别的方式。 我们可以有这个思路,这里只是给大家简单介绍一下python的这个人脸识别库。当然也会有其他的编程语言的实现人脸识别。 后期会写出动态拍照人脸识别

    11960

    Android人脸识别识别人脸特征

    本文我们接着来看看,在完成了人脸注册之后我们该如何识别出用户的人脸特征,从而通过人脸识别获取用户信息。 人脸识别的全部流程集成在官方 Demo 的 DetecterActivity 文件中。 还是来了解几个概念 人脸追踪 FT 年龄检测 Age 性别检测 Gender 其中人脸追踪 FT 与人脸检测 FD 功能基本一致(甚至代码基本都是相同的),Age 引擎用于识别年龄,Gender 引擎用于识别性别 识别流程 整体上比人脸注册还要简单,官方提供了很好的封装供我们使用,我们来看看流程。 流程是这样的 提取图片中的人脸 → 与我们已经注册过得特征集合进行特征匹配 → 匹配程度最高的作为最终识别结果 这一过程是放在一个子线程中运行的,代码如下: //人脸识别线程 class FRAbsLoop

    2K30

    LBPH人脸识别

    cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.LBPHFaceRecognizer_create()#LBPH人脸识别 特征图像划分为一个个单元格时,每个单元格在水平方向上的像素个数 grid_y表示将LBP特征图像划分为一个个单元格时,每个单元格在垂直方向上的像素个数 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象 ) src表示输入图像 labels表示标签 label, confidence=cv2.face_FaceRecognizer.predict(src) src表示输入图像 注意:置信度评分用来衡量识别结果与原有模型之间的距离

    8230

    树莓派人脸识别实际应用:人脸识别门禁

    在上一篇文章树莓派调用百度人脸识别API实现人脸识别,我们完成了树莓派人脸识别的基础环境配置,人脸识别功能也测试成功了,现在我们做一个小小的案例来实际应用一下,我们想树莓派人脸识别成功后,发送蓝牙串口数据给 import base64 import time import bluetooth from bluetooth_test import bt_open,servo_init,bt_close #百度人脸识别 : f = open('faceimage.jpg','rb') img = base64.b64encode(f.read()) return img #上传到百度api进行人脸检测 def go_api(image): result = client.search(str(image, 'utf-8'), IMAGE_TYPE, GROUP);#在百度云人脸库中寻找有没有匹配的人脸 f.close() return 1 if result['error_msg'] == 'pic not has face': print('检测不到人脸

    81710

    python人脸识别

    目录 1 读取图片 2 将图片灰度转换 3 修改图片尺寸 4 绘制矩形_圆 5 人脸检测 6 检测多张人脸 7 检测视频中的人脸 8 训练数据并人脸识别 8.1 训练数据 8.2 人脸识别 1 读取图片 8 训练数据并人脸识别 8.1 训练数据 import os import cv2 import sys from PIL import Image import numpy as np def getImageAndLabels face.LBPHFaceRecognizer_create() recognizer.train(faces,np.array(ids)) # 保存文件 recognizer.write('trainer.yml') 8.2 人脸识别 /trainer.yml') # 准备识别的图片 img = cv2.imread(r'E:/girl.jpg') # 将图片缩小至原来的1/2 height, width = img.shape[: (gray) for x, y, w, h in faces: cv2.rectangle(reSize, (x, y), (x+w, y+h), (0, 255, 0), 2) # 人脸识别

    40231

    LDA人脸识别

    cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.FisherFaceRecognizer_create()#人脸识别 predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 10647.989937693492 算法:LDA人脸识别是一种经典的线性学习方法 , num_components[, threshold]]) num_components表示使用Fisherfaces准则进行线性判别分析时保留的成分数量,默认值是0 threshold表示进行识别时所使用的阈值

    8510

    扫码关注腾讯云开发者

    领取腾讯云代金券