但是我们需要统计的时间单位是以日为周期,故而这里可以先做简单的去掉时间部分的处理方式 采用字符串的split方法,按照‘ ’(空格)进行切片,取第一部分即可 #因为日期数据为时间格式,可以简单使用字符串按照空格切片后取第一部分...pd.to_datetime(df["@timestamp"]) #将日期列转化为 时间格式 第三步,分组排序 分组排序是指将每个用户登录日期进行组内排序 采用groupby方法结合rank方法进行处理...第四步,计算差值 这一步是辅助操作,使用第三步中的辅助列与用户登录日期做差值得到一个日期,若某用户某几列该值相同,则代表这几天属于连续登录 因为辅助列是float型,我们在做时间差的时候需要用到to_timedelta...第五步,分组计数 通过上一步,我们可以知道,计算每个用户date_sub列出现的次数即可算出该用户连续登录的天数 data = df.groupby(['role_id','date_sub']).count...读取登录日志数据 df['@timestamp']=df['@timestamp'].str.split(' ').str[0] #因为日期数据为时间格式,可以简单使用字符串按照空格分列后取第一部分
一是通过iloc 索引访问,只能接受整数索引,也不能添加逻辑判断的过滤条件,但它不受标签值的影响可以一直通过整数索引访问,在对series排序后如果想获取首个元素,就可以通过iloc 来访问,因为此时标签的顺序已经改变...访问dataframe 元素的方式 # 获取dataframe 一列的数据 df['日期'] # 获取dataframe 几列的数据 df[['x', 'y']] # 同样的也可以使用loc 按标签取...方法获取数据 df.head(3) # 前三行 df.tail(3) # 后三行 切片 取值 df.loc["b" : "e", "bx" : "ex"] # 传入行列的标签索引值进行切片 df1...pandas 常用函数 pandas中的函数 一般会有两种结果,一是copy,即返回一个修改后的副本,原有的不变,二是inplace,即在原有基础上直接进行修改。...注意:dataframe 中的统计函数与series中的相关统计函数基本一致,使用方法基本没有区别。
(merged_df) on='name'指定函数以name这一列来合并表格 分组函数groupby 想象一个场景,一个表中每行记录了某个员工某日的工作时长,如下 import pandas as pd...}) print(df) 当我们想要统计员工a的总时长该怎么办呢,我们要把a和b先分组,这就是groupby函数的作用 groupby函数的参数是决定根据哪一列来进行分组的 import pandas...4, 5]}) print(df.groupby("str")) print(list(df.groupby("str"))) 如上图所示,groupby函数返回的是一个分组对象,我们使用list...函数把它转化成列表然后打印出来,可以看到成功分组了,我们接下来会讲解如何使用聚合函数求和 聚合函数agg 在上面的例子中我们已经分好了组,接下来我们使用agg函数来进行求和,agg函数接收的参数是一个函数...) 注意:在使用drop时,如果只写df.drop()是没有用的,你必须像上面两个例子一样,将drop后的df表格赋值给原来的表格。
]进行访问(仅针对整数作为索引的情况) 切片访问方法 DataFrame.loc[]访问 访问时主要采用[行索引或者条件,‘column1_name’]的方式对 DataFrame 进行切片,对行的指定要使用索引或者条件...使用 iloc 传入的行索引位置或列索引位置为区间时,则为前闭后开区间 #例3-46,iloc条件切片 #iloc内部传入表达式,进行条件切片,需使用.values属性 print('条件表达式使用字典方式...分组后的对象其实可以视作一个新的 df 或者 se(SeriesGroupBy object),名字即为分组键的值(如果是通过传递函数进行分组那么索引值就是函数的返回值),当数据集比较大时,我们有时候只希望对分组结果的部分列进行运算...,因此可以写成类似于下边的形式: df.groupby(['key1', 'key2'])[['data2']].mean() 分组后可以进行的操作: 描述性统计分析(见描述性统计分析) 聚合运算 使用...窗口函数 在实际应用过程中,我们可能会存在对整个 df 的局部数据进行统计分析的场景,这时就需要用到所谓的“窗口函数”,可以理解为在整体数据集上创建窗口来进行运算,pd 中提供的几种窗口函数有: rolling
本文来讲述一下科学计算库Pandas中的一些常用操作~ 看完别忘记文末点赞呦~ 01 为什么要用Pandas?...Pandas的主要特点 基于Numpy创建,继承了Numpy中优秀的特点; 能够直接读取结构化数据进行操作; 以类似于表格的形式呈现数据,便于观察; 提供了大量的数理统计方法。...# 使用索引值位置选择 df1.iloc[3] # 使用切片的方式批量选择 df1.iloc[3:5, 0:2] # 使用索引值位置列表选择 df1.iloc[[1, 2, 4], [0, 2]]...07 按条件选择数据 # 用单列的值选择数据 df1[df1.A>0] # 选择df中满足条件的值(不满足会现实NaN) df1[df1>0] # 使用isin()选择 df2[df2['E']...# 我们不能直接查看分组后的结果,要进行一些其他的操作 df5.groupby('A') # 根据分组统计数值和 df5.groupby('A').sum() # 对分组进行迭代 for name
作为 pandas 教程的第四篇,本篇将对比 sql 语言,学习 pandas 中各种类 sql 操作,文章篇幅较长,可以先收藏后食用,但不可以收藏后积灰~ 为了方便,依然以下面这个 DataFrame...,设置为 False 则 index 列会被还原为普通列,否则的话就直接丢失,这里我们设置为 True,直接丢掉,否则的话,就会出现以只带文件名方式读取了保存 index 的 csv 文件那样的错误:...切片选择:第 0 个学生,即成绩最差的学生的第 0 列 ,即 name 列。...groupby groupby 即分组聚合,df.group_by() 即可实现,它返回的是一个 GroupBy 对象而不是 dataframe 需要对这个 GroupBy 对象进行后续的聚合函数调用才会返回...name,即只有 Bob、Alice 两人的共六门成绩 左外连接 保留左表中 name 中出现的而右表没有出现的,同时对应右表的 number 字段置空 右外连接 参见左外连接 全外连接 都置空 pandas
索引器中括号内行列下标的位置上都允许使用切片和花式索引,下例中行使用切片,列使用花式索引。 注意:下面的3:5表示下标为3和4的两行,[0,2]表示下标为0和2的两列。...索引器中括号内行列下标的位置上都允许使用切片和花式索引,下例中行使用切片,列使用花式索引。...sex_value df['salary']=salary_value print("增加性别和工资列之后:") df 2、在尾部增加一行 注意:此处只能使用loc索引器(使用iloc会出现索引越界的提示...该任务可以分两步进行: #(1)用filter函数得到满足所需条件的分组中的记录,它的结果是整个数据集的子集 flt_df=team.groupby('team').filter(lambda x: (...mean() 补充说明: ① filter函数用于对分组进行过滤(类似于SQL中的having子句) ② filter函数返回满足过滤条件的分组中的记录,而不是满足条件的分组 ③ 其参数必须是函数
☞500g+超全学习资源免费领取 这是Python数据分析实战基础的第三篇内容,主要对前两篇进行补充,把实际数据清洗场景下常用但零散的方法,按增、删、查、分四板斧的逻辑进行归类,以减少记忆成本,提升学习和使用效率...上文我们合并后的df数据集就是有缺失数据的: 要删除空值,一个dropna即可搞定: dropna函数默认删除所有出现空值的行,即只要一行中任意一个字段为空,就会被删除。...排序完之后,筛选TOP3渠道就非常简单: 补充一个知识点,如果跟着文章操作,会发现无论是删空的dropna,还是去重的drop_duplicates,或者是排序的sort_values,在对源数据进行操作后...但这里为了避免出现不必要的错误而无法更改,更建议大家把操作后的源数据赋值给新的变量,如new = df.dropna(),而不是将源数据的inplace参数设置为True。...groupby是分组函数,最主要的参数是列参数,即按照哪一列或者哪几列(多列要用列表外括)进行汇总,这里是按照流量级别: 可以看到,直接分组之后,没有返回任何我们期望的数据,要进一步得到数据,需要在分组的时候对相关字段进行计算
有的朋友在想,这样的操作在python可能会很复杂。但其实一点不复杂,而且只需一行代码即可。 为什么可以做到一行代码实现 “条件格式”?...实例 首先,我们导入数据集,使用经典的titanic中抽样的部分数据。...df.style.bar("Fare",vmin=0) 2、再比如,我们想让Age变量呈现背景颜色的梯度变化,以体验映射的数值大小,那么可直接使用background_gradient,深颜色代表数值大...其它操作 上面仅仅是列举了三个style中常用的操作,还有很多其他操作比如高亮最大值、给所有负值标红等等,通过参数subset还可以指定某一列或者某几列的小范围内进行条件格式操作。...subset进行dataframe切片,选择指定的列 applymap(color_negative_red, subset=pd.IndexSlice[2:5, [
df.head() # 默认读取前5行 df.tail() # 默认读取后5行 查看DataFrame描述信息 df.info ?...切片 # 获取单列 df['首付'] # 获取多列 df[['首付','建筑面积']] # 获取指定几行指定几列 df.loc[1:7,['单价','建筑面积']] 筛选 df[df['首付']>250...‘住宅类别中’是否有一列为空 df.isnull().any() # 检查所有列中是否含有控制 df.isnull().sum() # 对所有列中的空值进行计数 移除缺失值 # 函数作用:删除含有空值的行或列...,就删除这一行或列 # thresh:一行或一列中至少出现了thresh个才删除。...# subset:在某些列的子集中选择出现了缺失值的列删除,不在子集中的含有缺失值得列或行不会删除(有axis决定是行还是列) # inplace:刷选过缺失值得新数据是存为副本还是直接在原数据上进行修改
这里我们就遇到了所谓的“链接索引”,具体原因是使用了两个索引器,例如:df[][] df[df['x']>3] 导致Pandas创建原始DataFrame的单独副本 df[df['x']>3]['y']...反转切片的顺序时,即先调用列,然后再调用我们要满足的条件,便得到了预期的结果: df['y'][df['x']>3]=50 x y w 0 1 0.1 11 1 5 50.0...4 0.4 14 5 5 30.0 15 当我们创建了视图后,pandas就会出现warning,因为它不知道我们是否只想更改y系列(通过z)或原始值df。...pandas提供了copy()方法,当我们将命令更新为以下所示的命令时: z = df['y'].copy() 我们将在内存中创建一个具有其自己地址的全新对象,并且对“z”进行的任何更新df都将不受影响...实际上有两个要点,可以使我们在使用切片和数据操作时免受任何有害影响: 避免链接索引,始终选择.loc/ .iloc(或.at/ .iat)方法; 使用copy() 创建独立的对象,并保护原始资源免遭不当操纵
本文将从浅入深介绍如何使用 Pandas 进行电子商务数据分析,并探讨常见的问题及解决方案。1. 数据加载与初步探索在进行数据分析之前,首先需要将数据加载到 Pandas 的 DataFrame 中。...数据分析与可视化经过清洗和预处理后,我们可以开始进行数据分析。Pandas 提供了丰富的聚合函数和分组操作,能够帮助我们快速获取所需信息。例如,计算每个用户的总消费金额、每种商品的销量等。...对于分组聚合操作,尽量减少中间结果的生成,直接返回最终结果。4. 常见报错及解决方法在使用 Pandas 进行数据分析时,难免会遇到一些报错。...以下是几种常见的报错及其解决方法:KeyError:当尝试访问不存在的列时,会出现 KeyError。确保列名拼写正确,并且该列确实存在于 DataFrame 中。...]', '', regex=True).astype(float)SettingWithCopyWarning:当对切片后的 DataFrame 进行赋值操作时,可能会触发此警告。
=True) # 使用0填充缺失值 df 删除缺失值 data.dropna(how = 'all') # 传入这个参数后将只丢弃全为缺失值的那些行 结果如下: 当然还有其他情况: data.dropna....drop_duplicates() # 某一列后出现重复数据被清除 删除先出现的重复值 df['A'] = df['A'].drop_duplicates(keep=last) # # 某一列先出现重复数据被清除...) # 根据职位名称进行分组 group 根据职位名称进行分组: 得到一个对象,我们可以去进行平均值,总和计算; 当然了可以根据多个特征进行分组,也是没有问题的; 聚合 concat(): pd.concat( objs, axis=0,...如果为 True,则不要使用串联轴上的索引值。结果轴将被标记为 0, …, n - 1。如果您在连接轴没有有意义的索引信息的情况下连接对象,这将非常有用。请注意,其他轴上的索引值在连接中仍然有效。
、创建dataframe 3、 选择和切片筛选 4、增加删除列 5、排序 6、处理缺失值 7、分组统计 8、join操作 9、空值判断 10、离群点 11、去重 12、 生成新列 13、行的最大最小值...('color2')).show() 3、 选择和切片筛选 # 1.列的选择 # 选择一列的几种方式,比较麻烦,不像pandas直接用df['cols']就可以了 # 需要在filter,select等操作符中才能使用...filter方法 # 2.选择几列的方法 color_df.select('length','color').show() # 如果是pandas,似乎要简单些 df[['length','color...方法 #如果a中值为空,就用b中的值填补 a[:-2].combine_first(b[2:]) #combine_first函数即对数据打补丁,用df2的数据填充df1中的缺失值 df1.combine_first...我们得到一个有缺失值的dataframe,接下来将对这个带有缺失值的dataframe进行操作 # 1.删除有缺失值的行 clean_data=final_data.na.drop() clean_data.show
选择多行多列,使用位置索引器iloc,行列下标的位置上都允许切片和花式索引。 df.iloc[3:5,[0,2]] 为了使用标签索引,需要先判断name列的取值是否唯一。判断姓名是否有重名。...这样做是为了避免在对df2进行操作时影响到原始的 DataFrame df。...对 DataFrame df2中的每一行,从 ‘Q1’ 到 ‘Q4’ 列的值进行求和: df2.apply(lambda x:sum(x['Q1':'Q4']),axis=1) # 一次处理一行 使用了...在这个例子中,使用了一个lambda函数,它接受每个分组作为输入,并将其打印出来。print(x)语句会打印每个分组的内容。...3、返回一个包含每个分组中 ‘Q1’ 和 ‘Q4’ 列的最大值: df.groupby('team')['Q1','Q4'].apply(max) 对 DataFrame df根据 ‘team’ 列进行分组
为什么可以做到一行代码实现 “条件格式”? 一是使用了pandas的style方法,二是要得益于pandas的链式法则。 下面我们来一起看个例子,体验一下这个组合操作有多骚。...实例 首先,我们导入数据集,使用经典的titanic中抽样的部分数据。 import pandas as pd df = pd.read_csv("test.csv") df ?...3、让所有缺失值都高亮出来,可使用highlight_null,表格所有缺失值都会变成高亮。 df.style.highlight_null() ?...其它操作 上面仅仅是列举了三个style中常用的操作,还有很多其他操作比如高亮最大值、给所有负值标红等等,通过参数subset还可以指定某一列或者某几列的小范围内进行条件格式操作。...subset进行dataframe切片,选择指定的列 applymap(color_negative_red, subset=pd.IndexSlice[2:5, [
数据清洗中,我们经常需要从原始数据中通行列索引规则选择需要用于后续处理分析的数据,这便是本次的主要内容。 ?...数据清洗(通过索引选择数据) 1.索引设置 我们在使用pandas读取文件数据时,可以设定初始的索引。 这里我用之前 爬取过的 拉勾网产品经理岗位数据进行演示如下: ?...set_index设置索引列 1.3.reset_index reset_index就是重置索引(变为默认的索引 0到len()-1),比如可以把上面set_index设置的索引取消,,经常用在对数据进行处理...(分组或透视处理)后 ?...函数式索引 2.3. []操作符方法 df[val]主要是选取某列或某些列序列,当然我们也可以通过切片形式选取行(这里是整数索引切片形式) 2.3.1.行索引 ? 行索引 2.3.2.列索引 ?
如果我们想在现有几列的基础上生成一个新列,并一同作为输入,那么有时apply函数会相当有帮助。...你想要检查下“c”列中出现的值以及每个值所出现的频率,可以使用: df['c'].value_counts( 下面是一些有用的小技巧/参数: normalize = True:查看每个值出现的频率而不是频次数...dropna = False: 把缺失值也保留在这次统计中。 sort = False: 将数据按照值来排序而不是按照出现次数排序。...基于分位数分组 面对一列数值,你想将这一列的值进行分组,比如说最前面的5%放入组别一,5-20%放入组别二,20%-50%放入组别三,最后的50%放入组别四。...当你想把所有列的输出值都变成整数格式时,就可以使用这个技巧,这样一来你就会告别所有数值后带“.0”的烦恼。
如此一来,就可以避免选错分隔符这样的错误啦(数据不一定都是用逗号来分隔)。...如果我们想在现有几列的基础上生成一个新列,并一同作为输入,那么有时apply函数会相当有帮助。...你想要检查下“c”列中出现的值以及每个值所出现的频率,可以使用: df[ c ].value_counts( 下面是一些有用的小技巧/参数: normalize = True:查看每个值出现的频率而不是频次数...基于分位数分组 面对一列数值,你想将这一列的值进行分组,比如说最前面的5%放入组别一,5-20%放入组别二,20%-50%放入组别三,最后的50%放入组别四。...当你想把所有列的输出值都变成整数格式时,就可以使用这个技巧,这样一来你就会告别所有数值后带“.0”的烦恼。
.*", " ") 再来看下分割操作,例如根据空字符串来分割某一列 user_info.city.str.split(" ") 分割列表中的元素可以使用 get 或 [] 符号进行访问: user_info.city.str.split...Series中的每个字符串 slice_replace() 用传递的值替换每个字符串中的切片 count() 计数模式的发生 startswith() 相当于每个元素的str.startswith(pat...Series 操作时会作用到每个值上,在对 DataFrame 操作时会作用到所有行或所有列(通过 axis 参数控制)。...大家如果感觉可以的话,可以去做一些小练习~~ 【练习一】 现有一份关于字符串的数据集,请解决以下问题: (a)现对字符串编码存储人员信息(在编号后添加ID列),使用如下格式:“×××(名字):×国人...(c)将(b)中的ID列结果拆分为原列表相应的5列,并使用equals检验是否一致。
领取专属 10元无门槛券
手把手带您无忧上云