首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为什么在x=1的情况下对arcsin使用泰勒级数公式会如此迅速地收敛?

在x=1的情况下对arcsin使用泰勒级数公式会如此迅速地收敛的原因如下:

  1. 泰勒级数公式是一种近似展开的方法,可以将一个函数表示为一系列无限多项的求和形式。对于函数arcsin(x),泰勒级数公式可以表示为:arcsin(x) = x + (1/2)x^3/3 + (1/2)(3/4)x^5/5 + ...
  2. 当x=1时,泰勒级数公式中的每一项的系数都是有规律的。对于每一项,系数的绝对值都是递减的,并且每一项的系数与上一项的系数之比也是递减的。这意味着,随着级数的项数增加,每一项的贡献都会逐渐变小。
  3. 在x=1的情况下,arcsin(1)的值等于π/2。根据泰勒级数公式的收敛性,对于绝对值小于1的x值,级数的部分和会逐渐逼近函数的真实值。由于x=1时的值已知,因此我们可以通过不断增加级数的项数,使得级数的部分和越来越接近π/2,即使在相对较少的项数下也能获得较高的精度。
  4. 因为在x=1的情况下,泰勒级数公式中的每一项的系数都比较小,所以级数的部分和会迅速逼近π/2。这使得泰勒级数在计算arcsin(1)时表现出了很好的收敛性。

综上所述,当x=1的情况下对arcsin使用泰勒级数公式会如此迅速地收敛是因为级数的每一项的系数有规律且递减,x=1时的值已知且是较小的值,使得级数的部分和能够迅速逼近目标值π/2。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

​AdaRound:训练后量化的自适应舍入

在对神经网络进行量化时,主要方法是将每个浮点权重分配给其最接近的定点值。本文发现,这不是最佳的量化策略。本文提出了 AdaRound,一种用于训练后量化的更好的权重舍入机制,它可以适应数据和任务损失。AdaRound 速度很快,不需要对网络进行微调,仅需要少量未标记的数据。本文首先从理论上分析预训练神经网络的舍入问题。通过用泰勒级数展开来逼近任务损失,舍入任务被视为二次无约束二值优化问简化为逐层局部损失,并建议通过软松弛来优化此损失。AdaRound 不仅比舍入取整有显著的提升,而且还为几种网络和任务上的训练后量化建立了新的最新技术。无需进行微调,本文就可以将 Resnet18 和 Resnet50 的权重量化为 4 位,同时保持 1% 的精度损失。

01

相较神经网络,大名鼎鼎的傅里叶变换,为何没有一统函数逼近器?答案在这

来源:机器之心本文约2400字,建议阅读10分钟其实,针对不同类型的任务,我们可以有选择性地使用傅里叶变换或神经网络。 函数逼近(function approximation)是函数论的一个重要组成部分,涉及的基本问题是函数的近似表示问题。函数逼近的需求出现在很多应用数学的分支学科中,尤其是计算机科学。具体而言,函数逼近问题要求我们在定义明确的类中选择一个能够以特定于任务的方式匹配(或逼近)目标函数的函数。 目前,领域内可以实现函数逼近的方式有很多,比如傅里叶变换以及近年来新兴的神经网络。这些函数逼近器在实

03

科学的根源(一)

探究世界的成因,在自然界中存在很多自然现象、事件,而这些现象都由某些规律支配着。而要理解支配自然界的神秘力量,首先必须将真理从纯粹的迷信中剥离出来。而要把真理从中剥离出来,需要做一些预备性的工作:找到如何从数学上将真理和迷信分开的方法,也即需要某种程序来鉴别一个给定的数学命题是否为真。古希腊大哲学家泰勒斯(Thales)和毕达哥拉斯引入了数学证明的思想后,理解数学-从而理解科学本身的第一块基石才得以确立。也即是什么的问题。也即由此引入公理和定理的概念。公理是大家都公认的、同时正确自明的。而定理则是从公理出发,通过公理推断出来的正确的命题。

02

常见函数的泰勒公式展开_基本泰勒公式展开表

e x = ∑ n = 0 ∞ 1 n ! x n = 1 + x + 1 2 ! x 2 + ⋯ ∈ ( − ∞ , + ∞ ) sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = x − 1 3 ! x 3 + 1 5 ! x 5 + ⋯   , x ∈ ( − ∞ , + ∞ ) cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n = 1 − 1 2 ! x 2 + 1 4 ! x 4 + ⋯   , x ∈ ( − ∞ , + ∞ ) ln ⁡ ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n n + 1 x n + 1 = x − 1 2 x 2 + 1 3 x 3 + ⋯   , x ∈ ( − 1 , 1 ] 1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + x 3 + ⋯   , x ∈ ( − 1 , 1 ) 1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − x 3 + ⋯   , x ∈ ( − 1 , 1 ) ( 1 + x ) α = 1 + ∑ n = 1 ∞ α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯   , x ∈ ( − 1 , 1 ) arctan ⁡ x = ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 = x − 1 3 x 3 + 1 5 x 5 + ⋯ + x ∈ [ − 1 , 1 ] arcsin ⁡ x = ∑ n = 0 ∞ ( 2 n ) ! 4 n ( n ! ) 2 ( 2 n + 1 ) x 2 n + 1 = x + 1 6 x 3 + 3 40 x 5 + 5 112 x 7 + 35 1152 x 9 + ⋯ + , x ∈ ( − 1 , 1 ) tan ⁡ x = ∑ n = 1 ∞ B 2 n ( − 4 ) n ( 1 − 4 n ) ( 2 n ) ! x 2 n − 1 = x + 1 3 x 3 + 2 15 x 5 + 17 315 x 7 + 62 2835 x 9 + 1382 155925 x 11 + 21844 6081075 x 13 + 929569 638512875 x 15 + ⋯   , x ∈ ( − π 2 , π 2 ) \begin{aligned} e^{x}&=\sum_{n=0}^{\infty} \frac{1}{n !} x^{n}=1+x+\frac{1}{2 !} x^{2}+\cdots \in(-\infty,+\infty) \\ \sin x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}=x-\frac{1}{3 !} x^{3}+\frac{1}{5 !} x^{5}+\cdots, x \in(-\infty,+\infty) \\ \cos x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n) !} x^{2 n}=1-\frac{1}{2 !} x^{2}+\frac{1}{4 !} x^{4}+\cdots, x \in(-\infty,+\infty) \\ \ln (1+x)&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots, x \in(-1,1] \\ \frac{1}{1-x}&=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots, x \in(-1,1) \\ \frac{1}{1+x}&=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+\cdots, x \in(-1,1)\\ (1+x)^{\alpha}&=1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} x^{n}=1+\alpha x+\frac{\alpha(\alpha-1)}{2 !} x^{2}+\cdots, x \in(-1,1) \\ \arctan x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots+

05
领券