首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为什么我们要在resnet-50架构中增加维度?

在resnet-50架构中增加维度的目的是为了提高模型的表达能力和性能。具体原因如下:

  1. 增加维度可以增加模型的深度:resnet-50是一个深度卷积神经网络,通过增加维度可以增加网络的层数,进一步提高模型的表达能力。更深的网络可以学习到更复杂的特征和抽象表示,从而提高模型的性能。
  2. 增加维度可以增加模型的宽度:在resnet-50中,每个残差块都有多个卷积层,通过增加维度可以增加每个残差块内部卷积层的通道数。增加通道数可以增加每个残差块内部的特征表达能力,使得模型更加适应复杂的数据分布。
  3. 增加维度可以提高模型的泛化能力:通过增加维度,模型可以学习到更多的特征信息,从而提高模型对不同类别样本的区分能力。增加维度还可以减少特征信息的丢失,提高模型的泛化能力。
  4. 增加维度可以提高模型的准确率:通过增加维度,模型可以更好地捕捉输入数据的细节和特征,从而提高模型的准确率。增加维度还可以减少模型的欠拟合情况,提高模型的拟合能力。

在resnet-50架构中增加维度的具体方法可以是增加卷积层的通道数、增加残差块的数量或者增加全连接层的维度等。这样可以在不增加网络参数量的情况下提高模型的表达能力和性能。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云AI推理:https://cloud.tencent.com/product/tci
  • 腾讯云机器学习平台:https://cloud.tencent.com/product/tensorflow
  • 腾讯云深度学习工具包:https://cloud.tencent.com/product/tensorflow
  • 腾讯云图像识别:https://cloud.tencent.com/product/tii
  • 腾讯云视频智能分析:https://cloud.tencent.com/product/tva
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

arxiv | Swin Transformer:使用移动窗口的分层Vision Transformer

今天给大家介绍的是微软亚洲研究院的一篇文章”Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”。从语言到视觉应用Transformer的挑战来源于两个领域的差异,例如和文本字词相比视觉实体的复杂变化以及图像像素的高分辨率两方面的差异。为了解决这样的问题,作者在这篇文章中提出一种称为Swin Transformer新型Vision Transformer。Swin Transformer使用允许跨窗口连接的移动窗口将自注意力限制在不重叠的局部窗口上计算表示,其提出的层次结构具有不同尺度上图像上建模的灵活性,在各种视觉任务上取得优秀的结果,有望在计算机视觉领域取代CNN成为一种通用框架。

04

谷歌开源新模型EfficientNet,或成计算机视觉任务新基础

开发一个卷积神经网络(CNN)的成本通常是固定的。在获得更多资源时,我们通常会按比例进行扩展,以便获得更优的准确性。例如,ResNet可以通过增加层数从ResNet-18扩展到ResNet-200,最近,GPipe 网络通过将基准 CNN 模型扩展四倍,在 ImageNet Top-1 上获得了 84.3% 的准确度。在模型扩展方面的操作通常是任意增加 CNN 的深度或宽度,或者在更大输入图像分辨率上进行训练和评估。虽然这些方法确实提高模型了准确性,但它们通常需要繁琐的手工调整,而且还不一定能找到最优的结构。换言之,我们是否能找到一种扩展设计方法来获得更好的准确性和效率呢?

01

Squeeze-and-Excitation Networks

卷积神经网络(CNNs)的核心构件是卷积算子,它通过在每一层的局部接受域内融合空间和信道信息来构造信息特征。之前的大量研究已经研究了这种关系的空间成分,试图通过提高整个特征层次的空间编码质量来增强CNN的代表性。在这项工作中,我们关注的是通道之间的关系,并提出了一个新的架构单元,我们称之为“挤压-激励”(SE)块,它通过显式地建模通道之间的相互依赖关系,自适应地重新校准通道方向的特征响应。我们展示了这些块可以叠加在一起形成SENet架构,从而非常有效地在不同的数据集中进行泛化。我们进一步证明,SE块可以显著提高现有的最先进的CNNs的性能,只需要稍微增加一些计算成本。挤压和激励网络构成了我们ILSVRC 2017年分类提交的基础,该分类提交获得了第一名,并将前5名的错误减少到2.251%,比2016年获奖的条目相对提高了约25%。

02

GhostNet: More Features from Cheap Operations论文解析

由于内存和计算资源有限,很难在嵌入式设备上部署卷积神经网络(CNN)。特征图中的冗余是那些成功的CNN的重要特点,但很少在神经体系结构设计中进行研究。本文提出了一种新颖的Ghost模块,可以通过简单的操作生成更多的特征图。基于一系列内在的特征图,我们应用了一系列简单的线性变换以生成许多ghost特征图,这些ghost特征图可以充分揭示内部特征的信息。提出的Ghost模块可以作为即插即用组件来升级现有的卷积神经网络。Ghost boottlenecks 旨在堆叠Ghost模块,然后可以轻松建立轻量级的GhostNet。实验表明:我们的GhostNet可以实现比MobileNetV3更高的识别性能(例如75.7%top-1精度)。

04

EfficientNet解析:卷积神经网络模型规模化的反思

自从Alexnet赢得2012年的ImageNet竞赛以来,CNNs(卷积神经网络的缩写)已经成为深度学习中各种任务的事实算法,尤其是计算机视觉方面。从2012年至今,研究人员一直在试验并试图提出越来越好的体系结构,以提高模型在不同任务上的准确性。近期,谷歌提出了一项新型模型缩放方法:利用复合系数统一缩放模型的所有维度,该方法极大地提升了模型的准确率和效率。谷歌研究人员基于该模型缩放方法,提出了一种新型 CNN 网络——EfficientNet,该网络具备极高的参数效率和速度。今天,我们将深入研究最新的研究论文efficient entnet,它不仅关注提高模型的准确性,而且还关注模型的效率。

03

CVPR 2020 | 一种频域深度学习

深度神经网络在计算机视觉任务中取得了显著的成功。对于输入图片,现有的神经网络主要在空间域中操作,具有固定的输入尺寸。然而在实际应用中,图像通常很大,必须被降采样到神经网络的预定输入尺寸。尽管降采样操作可以减少计算量和所需的通信带宽,但它会无意识地移除冗余和非冗余信息,导致准确性下降。受数字信号处理理论的启发,我们从频率的角度分析了频谱偏差,并提出了一种可学习的频率选择方法,可以在不损失准确性的情况下移除次相关的频率分量。在下游任务中,我们的模型采用与经典神经网络(如ResNet-50、MobileNetV2和Mask R-CNN)相同的结构,但接受频域信息作为输入。实验结果表明,与传统的空间降采样方法相比,基于静态通道选择的频域学习方法可以实现更高的准确性,同时能够减少输入数据的大小。具体而言,在相同的输入尺寸下,所提出的方法在ResNet-50和MobileNetV2上分别实现了1.60%和0.63%的top-1准确率提升。当输入尺寸减半时,所提出的方法仍然将ResNet-50的top-1准确率提高了1.42%。此外,我们观察到在COCO数据集上的分割任务中,Mask R-CNN的平均精度提高了0.8%。

04

首个基于时序平移的视频迁移攻击算法,复旦大学研究入选AAAI 2022

近年来,深度学习在一系列任务中(例如:图像识别、目标识别、语义分割、视频识别等)取得了巨大成功。因此,基于深度学习的智能模型正逐渐广泛地应用于安防监控、无人驾驶等行业中。但最近的研究表明,深度学习本身非常脆弱,容易受到来自对抗样本的攻击。对抗样本指的是由在干净样本上增加对抗扰动而生成可以使模型发生错误分类的样本。对抗样本的存在为深度学习的应用发展带来严重威胁,尤其是最近发现的对抗样本在不同模型间的可迁移性,使得针对智能模型的黑盒攻击成为可能。具体地,攻击者利用可完全访问的模型(又称白盒模型)生成对抗样本,来攻击可能部署于线上的只能获取模型输出结果的模型(又称黑盒模型)。此外,目前的相关研究主要集中在图像模型中,而对于视频模型的研究较少。因此,亟需开展针对视频模型中对抗样本迁移性的研究,以促进视频模型的安全发展。

03
领券