我的训练速度最高是每秒大约处理 2.4 幅图像,切换到更强大的GTX 1080 后也没有提升。后来我注意到这个瓶颈,修复后训练速度就变成每秒50幅图像。...如果你发现图当中出现了负峰值,则系统无法在计算机要处理一个批次的时间内生成新的数据。其中的一个原因上面已经说过了。根据我的经验,最常见的原因是 min_after_dequeue 值很大。...例如调试和发送错误消息,可能最初构建图的时候在代码里出现一次,然后在实际评估的时候又出现一次,当你习惯于代码只被评估一次后,这就有些别扭。 另一个问题是图的构建是和训练回路(loop)结合在一起的。...打开Tensorboard的图视图,选择左侧的最新运行,你就能在右边看到性能的详细信息。一方面,这方便你调整模型,尽可能多地使用机器;另一方面,这方便你在训练管道中发现瓶颈。...TensorFlow 1.0 推出了新的 TFDebugger,看起来很有用。我现在还没有使用这个功能,但接下来几个星期肯定会用。
由于在Google可以获取到无穷的计算资源,如何扩大训练的规模便成为该项目的另一个目标——因为即便采用这些小型的数据集,在单个CPU上完成训练也要花上数周的时间。...如果数据管道足够好,你就可以线性增加模型每秒内的训练步数,方法是增加机器——因为机器之间互不依赖。然而,当机器增加时,由于老机器更新了权重,新机器的权重会逐步过期或“落伍”。...但同步随机梯度下降算法(Sync SGD)允许各机器使用更小、更快的批尺寸,从而来增加每秒的步数(steps/sec)。然而,同步随机梯度下降算法也有它自己的问题。...首先,它需要大量的机器经常进行同步,这必然导致停机时间的增加。其次,除非将每台机器的批尺寸设为1,否则它无法通过增加机器来增加每秒训练的步数。...对于我,我在这个项目中,最初的目标是,在不久的将来,所有人都可以看到查理·卓别林这类老电影的4K版。 不过,我确实发现,这一模型的构建、训练和调试都相当困难。
由于在Google可以获取到无穷的计算资源,如何扩大训练的规模便成为该项目的另一个目标——因为即便采用这些小型的数据集,在单个CPU上完成训练也要花上数周的时间。...如果数据管道足够好,你就可以线性增加模型每秒内的训练步数,方法是增加机器——因为机器之间互不依赖。然而,当机器增加时,由于老机器更新了权重,新机器的权重会逐步过期或“落伍”。...但同步随机梯度下降算法(Sync SGD)允许各机器使用更小、更快的批尺寸,从而来增加每秒的步数(steps/sec)。 然而,同步随机梯度下降算法也有它自己的问题。...首先,它需要大量的机器经常进行同步,这必然导致停机时间的增加。其次,除非将每台机器的批尺寸设为1,否则它无法通过增加机器来增加每秒训练的步数。...对于我,我在这个项目中,最初的目标是,在不久的将来,所有人都可以看到查理·卓别林这类老电影的4K版。 不过,我确实发现,这一模型的构建、训练和调试都相当困难。
去年,在通过对TensorFlow的研究得出一点点心得之后,我申请并入选了谷歌大脑举办的的首届见习项目(Google Brain Residency Program)。...但可行的是,在放大照片的同时将像素可能构成的合理图形进行推测并呈现,这也是实现我目标的第一步–逆向提高图片的分辨率。...就计算资源而言,在Google不会因GPU或CPU的数量而受限,所以如何扩大训练的规模便成为该项目的另一个目标——因为即便采用这些小型的数据集,在单个GPU上完成训练也要花上数周的时间。...我相信我在这个项目中尝试的超分辨率问题在不久的将来就会被解决,所有人都可以看到查理·卓别林这类老电影的4K版。 不过,我确实发现,这一模型的构建、训练和调试都相当困难。...我最初使用的是Caffe,后来又不得不称赞TensorFlow带来的好处,而PyTorch 和 Chainer之类的项目现在则使用动态计算图来形吸引客户。
几个月后,我们创建了最初的端到端工作系统,然后就是上文提到的在2016年2月发布了我们的开源版本。...我们通过(1)在隔离的线程池中加载多个模型,以避免在其他模型中出现延迟峰值;(2)在服务器启动时,加速所有模型的初始加载;(3)多模型批处理到多路复用硬件加速器(GPU/TPU)。...标准化的模型格式:我们将SavedModel添加到TensorFlow 1.0中,为社群提供了一种可以跨训练和服务工作的标准的模型格式。...TensorFlow Serving目前正在为1100多个项目,包括Google的Cloud ML Prediction,每秒处理数千万次的推论。我们的核心服务代码可以通过我们的开源获得。...今天,我很高兴能在实验领域分享TensorFlow Serving的早期进展: 粒度批处理(Granular batching):我们在专门的硬件(GPU和TPU)上实现高吞吐量的关键技术是“批处理”:
现在,让我们再回到这个项目开始的地方,回顾我们的进展过程,并分享我们下一步的方向。...几个月后,我们创建了最初的端到端工作系统,并在2016年2月释出第一个开源版本。...我们通过(1)在隔离的线程池中加载多个模型,以避免在其他模型中出现延迟峰值;(2)在服务器启动时,并行加速所有模型的初始加载;(3)多模型批交错以复用硬件加速器(GPU/TPU)。...标准化模型格式:我们将 SavedModel 添加到 TensorFlow 1.0,为社区提供了一种单一标准的模型格式,可以跨训练和服务工作。...TensorFlow Serving 目前正在为1100多个我们自己的项目,包括谷歌云的ML预测,每秒处理数千万次的推理任务。
过一些深度强化学习,你也可以训练木棍做后空翻 我曾经看到过一些建议:复现论文是提高机器学习能力的一种很好的方法,这对我自己来说是一个有趣的尝试。...(我忽略了每秒的帧中一个微小但莫名的衰变,从而导致几个月的多线程错误。) 如果能在一个地方看到所有的度量标准,调试就容易得多。我喜欢尽可能多得使用Tensorboard。...我初始的项目计划中主要阶段的时间表基本如下: ? 这是每个阶段实际花费的时间 不是写代码花费了很长时间,而是调试代码。实际上,在一个所谓的简单环境上运行起来花费了4倍最初预想的实现时间。...(这是第一个我连续花费数小时时间的业余项目,但是所获得的经验与过去机器学习项目类似。) (备注:从一开始就仔细设计,你想象中强化学习的“简单”环境。...不仅仅dropout你要小心,在实现权分享网络中时,你也需要格外小心 - 这也是批规范化。 别忘了网络中有很多规范化统计数据和额外的变量需要匹配。 经常看到运行过程中内存的峰值?
DALI 长期内存使用 我在 DALI 中遇到的第一个问题是,随着训练阶段的推移,RAM 的使用率增加,这都会导致 OOM 错误(即使在内存为 78GB 的虚拟机上也是如此)。...最后两个操作是在 GPU 上完成的,因为在实践中,它们非常快,并且减少了 CPU->GPU 内存带宽需求。在转到 GPU 之前,我试着固定张力,但没有从中获得任何性能提升。...在我的测试中,上面详述的新的完整 CPU 管道的速度大约是 TooVIEW 数据加载程序的两倍,同时达到了几乎相同的最大批大小。...与 Tensorflow 和 PyTorch 数据加载程序类似,TorchVision 和 DALI 管道不会产生完全相同的输出,你将看到验证精度略有不同。...对于峰值吞吐量,请尝试将数据加载程序工作线程数设置为虚拟 CPU 内核数。2 提供最佳性能(2 个虚拟内核=1 个物理内核)。
我在使用这个 app 随机识别桌子上的东西:) 谷歌刚刚发布了新的 TensorFlow 对象识别(Object Detection)API。...在示例中,他们用了“ SSD with Mobilenet”模型,不过你也可以在他们称为“TensorFlow detection model zoo”的地方下载其他预训练模型。...顺便说一句,这些模型在 COCO 数据集上训练,随不同的模型速度(慢、中、快)和模型性能(mAP-平均精度)而不同。 接着我照示例跑了一下。...然后,我将 OpenCV 连接到了我自己的网络摄像头。有很多关于这一步的示例,官方文件里也有。这里我就不详述了。最有趣的部分是我为了提升 app 性能做的优化。...因此,我不得不想出几种方法来解决这个问题: 从网络摄像头读取帧会引发大量输入输出。我最初的想法是把这部分直接移植到另外一个Python multiprocessing 中,但这个方法并不奏效。
本文将带你从最初的数据处理开始教你一步一步的实现一个“霉霉”检测器,来自动从一堆手机照片中找出“霉霉”。专知内容组编辑整理。...我下载了MobileNet校验文件进行训练。 校验文件是一个二进制文件,它包含了训练过程中TensorFlow模型在一些特殊点的状态。下载并解压缩校验文件后,您会看到它包含以下三个文件: ?...该文件除了将我的模型连接到云存储中的数据,还为我的模型配置了几个参数,例如卷积大小,激活函数和步数。 以下是开始训练之前/data云存储分区中应该存在的所有文件: ?...▌第3步:部署模型进行预测 ---- ---- 将模型部署到机器学习引擎我需要将我的模型检查点转换为ProtoBuf。 在我的训练过程中,我可以看到从几个检查点保存的文件: ?...▌第4步:使用Firebase和Swift构建预测客户端 ---- ---- 我在Swift中编写了一个iOS客户端来对我的模型进行预测请求(因为为什么不用其他语言编写TSwift检测器?)
对于在MLPerf基准测试上的功耗使用情况,A100平均上使用了1.3倍至1.9倍的功率。 峰值每秒浮点运算次数是否能预测实际性能?...许多机器学习领域的人认为峰值每秒浮点运算次数是一个很好的性能代理指标,但实际上并非如此。...例如,尽管在峰值每秒浮点运算次数上仅具有1.10倍的优势,TPU v4在两个MLPerf基准测试上比IPU Bow在相同规模的系统上快4.3倍至4.5倍。...另一个例子是,A100的峰值每秒浮点运算次数是TPU v4的1.13倍,但对于相同数量的芯片,TPU v4却快1.15倍至1.67倍。...如下如图使用Roofline模型展示了峰值FLOPS/秒与内存带宽之间的关系。 那么,问题来了,谷歌为什么不和英伟达最新的H100比较?
您优化过的所有机器学习模型都需要接受训练,验证和服务。 你需要一个机器学习平台。 这就是今天文章的主题,它介绍了Google TFX中的机器学习平台。 我为什么需要一个机器学习平台?...训练 一旦你模型中的代码(当然是在TensorFlow中写的)被融入到TFX中,你就能轻松地转换学习的算法。...TFX中内置了热启动,对网络中的热启动特征进行选择的功能也被提供,且已经在TensorFlow中开源。...培训数据集具有数百亿个示例,在生产过程中,系统必须以严格的延迟要求(几十毫秒)每秒处理数千个查询。...当我们将Google Play排名系统从之前的版本转移到TFX时,我们看到对新实验的迭代速度有所增加,减少了技术负债,提高了模型质量。 下一步 解释性?
在测试对1,000张图片进行快速识别时发现,Inception可以在NVIDIA GeForce 960m GPU的架构上以19fps(frame per second,每秒钟识别的图片数)的速度对图片进行识别...训练Inception V3,只需要将脚本中的-architecture-标签那里改为inception_v3即可。 旁注:为什么准确率只有95.9%?这看起来应该是个很好解决的问题。...确实,除了我们可以对训练参数进行充分的调试之外(我们实际上在另一次采用不同结构的训练中取得了98.9%的准确率),其实这两个类别之间的界定也有一些模糊。...比如说: 有一张图片的内容是是树林中一条不清晰的小径。这到底是一条铁路还是马路?我自己都不清楚。 有一张图片是,在风景名胜中的远处有条路。这到底是算作是一个风景还是一条道路?...接下来,我们还会创造一些新的训练数据,再进行精细的调试,然后将我们的再训练的MobileNet应用到一个Android app当中去。我们将会看到在现实中它可以达到怎样的运行速度和准确率。
2016 年 12 月获得 1,520 万美金的 A 轮资金,NovuMind 如今即将启动第二轮融资。吴韧在电话专访中解释:「这就是为什么我目前留在北京。」...吴韧进一步表示,「使用一维或者二维的运算单元去处理三维张量,必然会造成效率损失。...这也是为什么虽然现在 GPU 和 DSP 都有很高的峰值性能,高达 1-2 TOPS,但是一旦跑真实的深度学习网络,实测效率就只有峰值效率的 20-30%。...目前 NovuMind 芯片架构在 FPGA 原型上执行主流深度学习网络时,实测效率可达峰值性能的 75%-90%。...他认为,我们目前看到其他实际有用的网络拓扑都是以 VGG 的成果为基础的,包括大行其道的 ResNet,而 ResNet 中的相关层也是 Novumind 芯片优化的重点目标,目前来看,优化取得了非常好的效果
:专用处理器为什么好、为什么火起来。...针对不同的应用,开发者需要选择神经网络的类型和层数,而训练过程会决定网络中的权重。几乎所有的训练都是浮点运算,这就是 GPU 在深度学习时代如此受欢迎的原因之一。...它们在 TensorFlow 中的代码都非常短,只有 100-1500 行。这些例子是主服务器上运行较大应用程序中的小组件,这些大应用可能会由数千到数百万行 C++代码构成。...对于 HPC,y 轴表示每秒浮点运算性能(单位是 FLOPS),因此峰值计算率形成了 roofline 图的“平缓”区。...把 TPU 移动到 16 纳米工艺将进一步提高其性能/功耗。16 纳米英伟达 Pascal P40 GPU 的峰值性能是第一代TPU 的一半,但它 250 瓦的能耗却是原来的很多倍。
所以,为了建立我们的训练数据集,我需要录制一些(跟驾驶相关)日常生活中的场景:比说我家的周围、我车子的外部,我在车上摆弄收音机、逗猫等等。这些会被当做非道路的数据用来训练模型。 ?...用特定数据集训练MobileNet 下一步,是看看不同结构的MobileNet在经过训练后能达到什么样的准确度。...1000步的训练后,我们在测试集上达到了99.7%的准确率。...△ 被错认为非道路的道路图片,我认为这是因为在训练集中没有出现桥架在道路上的图片,更多的训练数据能解决这个问题。 接下来让我们在最小的MobileNet上(0.25@128)训练,同样采用权值量化。...在我的小米5上,它识别一张图片需要55毫秒,也就是每秒18帧(18fps)。 不过,在这个识别速度下,CPU的占用也比较大。在加足马力运行的情况下,CPU的占用大概为25到30%。 ?
也就是说,所有的 Thread 以锁步的方式执行同一条指令,但是每个 Thread 会使用各自的 Data 执行指令分支。...算力峰值计算GPU 的算力峰值是指 GPU 在理想情况下能够达到的最大计算能力,通常以浮点运算每秒(FLOPS)为单位进行衡量,GFLOPS(每秒十亿次浮点运算),TFLOPS(每秒万亿次浮点运算)。...计算 GPU 的算力峰值可以帮助开发人员了解其在理论上的最大性能,并进行性能预测和优化,更好地评估大模型训练过程中的算力利用率。...核心频率:GPU 的核心频率越高,每个核心每秒钟能够执行的指令数就越多。...每个核心的计算能力:不同型号的 GPU 具有不同的计算能力,通常以每个核心每个时钟周期能够执行的浮点指令数(FLOPS)为单位进行衡量。
如果您可以土工更长的训练时间,请将 epoch 数从例如 100 扩展到 500。如果您观察到更长训练时间的是有好处,可以在开始时就选择更合理的值。...如果他们中的一个不确定合适的标签,他可能没有或几乎没有信心分配。在这种情况下,引入第三个中性类是个好主意。这个额外的类代表“我不确定”标签。在训练期间,您可以排除此数据。...在它们的基本形式中,这些检查点每 k 步存储模型的权重。您还可以扩展它们以保持优化器状态、当前时期和任何其他关键信息。然后,在重新训练时,检查点保证可以从失败时恢复所有必要的设置。...这与自定义训练循环结合使用效果非常好。 编写自定义训练循环 在大多数情况下,使用默认的训练例程,例如 TensorFlow 中的 model.fit(...),就足够了。...通常,这是以数据并行的方式完成的:网络在不同的设备上复制,批次被拆分和分发。然后将梯度平均并应用于每个网络副本。在 TensorFlow 中,您有多种关于分布式训练的选择。
我的笔记本电脑CPU还可以,在TensorFlow等库的加持下,这台计算机可以在 10-100 毫秒内运行大部分常见CNN模型。2019年,即使是智能手机也能在不到半秒内运行「重量级」CNN模型。...当谈及高性能/高效DNN时,我常常问(或被问及)这些问题。 本文尝试介绍在DNN库中如何实现一个卷积层。...我的电脑CPU的峰值性能是每秒800亿FLOPs,也就是说理论上它可以在0.002秒内完成运行。但是很明显我们做不到,同样很明显的是,电脑的原始处理能力是非常充足的。...因此,该CPU的峰值性能为: ? GFLOP/s。这就是我的CPU的理论峰值性能。类似地,我们可以得出单核CPU的峰值性能为80 GFLOP/s。...本文假设CNN中的张量使用NCHW存储顺序,即如果HxW 图像的block为N,通道数为C,则具备相同N的所有图像是连续的,同一block内通道数C相同的所有像素是连续的,等等。 ?
点击上方↑↑↑“OpenCV学堂”关注我来源:公众号 机器之心 授权 深度学习是门玄学?也不完全是。 每个人都想让模型训练得更快,但是你真的找对方法了吗?...在康奈尔大学本科生、曾在 PyTorch 团队实习的 Horace He 看来,这个问题应该分几步解决:首先,你要知道为什么你的训练会慢,也就是说瓶颈在哪儿,其次才是寻找对应的解决办法。...例如,看看下表对于 BERT 中的不同算子类型占用的 FLOP 数,其中的「Tensor Contraction」就是指矩阵乘法。...现在想象一下,当我们执行一个一元运算(如 torch.cos)的时候,我们需要把数据从仓库(DRAM)运送到工厂(SRAM),然后在工厂中执行一小步计算,之后再把结果运送回仓库。...最后,可以看到内存带宽从峰值附近开始,随着我们增加计算强度开始下降。这正是我们所期待的,因为这说明执行实际计算的时间越来越多,而不是访问内存。
领取专属 10元无门槛券
手把手带您无忧上云