mpl #添加额外子区代码,以ax为基准,添加指定宽度和高度的区域 def add_axes(ax, pad, width): axpos = ax.get_position() caxpos...vegetables, rotation = 45, size = 15) ax.set_yticks(range(0, 7, 1), labels = vegetables, size = 15) #为每个方格填充数值...克服了传统笛卡尔直角坐标系容易耗尽空间、难以表达三维以上数据的问题。平行坐标将高维数据的各个变量用一系列相互平行的坐标轴表示,变量值对应轴上位置。...注:本文的平行坐标系使用pycharts库进行绘制。 现有一组数据,记录了各站点的PM2.5真实值和预测值及其其他变量。...现用平行坐标系表达PM2.5、预测的PM2.5与各变量的关系,代码如下: from pyecharts import options as opts from pyecharts.charts import
什么是平行坐标系图 平行坐标系图是一种多维数据可视化技术,通过将数据的不同特征(维度)表示为平行的坐标轴,以便在不同维度之间进行比较。...每个数据点用一条线段连接各个坐标轴上的对应数值,从而呈现出数据的模式、趋势和关系。 数据准备 首先,让我们创建一个示例数据集,用于绘制平行坐标系图。...以下是一些示例定制选项: 颜色:你可以为不同的特征线段指定不同的颜色。 透明度:通过设置线段的透明度,可以减少重叠线段的混淆。 标签:添加轴标签和图例以提供更多信息。...网格:添加网格线以帮助读者更准确地解释数据。...: 总结 平行坐标系图是一种强大的数据可视化工具,可以用于展示多维数据的模式和关系。
FFE5CC" "#CCE6FF" "#FFFFCC""#FFCCCC" $font [1] 1 1 1 1 1 1 1 $pch [1] 1 2 3 4 5 6 7 8 9 10 可以看到分组变量的每个水平都使用空心圆圈...透明度,数值为0(完全透明)到1(完全不透明)间的分数 color、shape、size、fill :把变量的水平与符号颜色、形状或大小联系起来。...为创建一个基于单条件变量的栅栏图,可用rowvar ~ .或. ~ colvar geom :设定定义图形类型的几何形状。..." 、"histogram"、"density"、"bar"和"jitter" main、sub :字符向量,设定标题和副标题 method、formula :若geom ="smooth",则会默认添加一条平滑拟合曲线和置信区间...16.4.5 rggobi GGobi有许多吸引眼球的优点,包括:交互式散点图、柱状图、平行坐标图、时间序列图、散点图矩阵和三维旋转的综合使用;窗口刷和点识别;多变量变换方法;复杂的探索平台,如导向动画的和手动的
平行坐标图 平行坐标图 (Parallel Coordinates Plots) 能显示多变量的数值数据,最适合用来比较同一时间的多个变量,并展示它们之间的关系。...当数据密集时,平行坐标图容易变得混乱、难以辨认。解决办法是通过互动技术,突出显示所选定的一条或多条线,同时淡化所有其他线条,让我们能更集中研究感兴趣的部分,并滤除干扰数据。...图表其中一条轴代表要比较的具体类别,另一条则用作离散数值的标尺。 条形图的离散数据是分类数据,针对的是单一类别中的数量多少,而不会显示数值在某时间段内的持续发展。...我们在地图上每个区域以不同深浅度的颜色表示数据变量,例如从一种颜色渐变成另一种颜色、单色调渐进、从透明到不透明、从光到暗,甚至动用整个色谱。 但缺点是无法准确读取或比较地图中的数值。...在绘制记数符号图表时,将类别、数值或间隔放置在同一个轴或列(通常为 Y 轴或左侧第一列)上。每当出现数值时,在相应的列或行中添加记数符号。
还可以创建联合分布图(marginal rugs),使用直方图,箱形图(box)或小提琴来显示双变量分布,也可以添加趋势线。...在你的Jupyter 笔记本中查看这些单行及其启用的交互: image.png 散点图矩阵(SPLOM)允许您可视化多个链接的散点图:数据集中的每个变量与其他变量的关系。...数据集中的每一行都显示为每个图中的一个点。 你可以进行缩放、平移或选择操作,你会发现所有图都链接在一起! image.png 平行坐标允许您同时显示3个以上的连续变量。...可视化数据有很多原因:有时您想要提供一些想法或结果,并且您希望对图表的每个方面施加很多控制,有时您希望快速查看两个变量之间的关系。 这是交互与探索的范畴。...仅接受整洁输入所带来的最终优势是它更直接地支持快速迭代:您整理一次数据集,从那里可以使用 px 创建数十种不同类型的图表,包括在 SPLOM 中可视化多个维度 、使用平行坐标、在地图上绘制,在二维、三维极坐标或三维坐标中使用等
散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和基本的图表。如果数据中有多个组,则可能需要以不同颜色可视化每个组。...下图显示了数据中各组之间最佳拟合线的差异。要禁用分组并仅为整个数据集绘制一条最佳拟合线,请从 sns.lmplot() 调用中删除 hue ='cyl' 参数。 ?...在下面的图表中,我为每个项目使用了不同的颜色,但您通常可能希望为所有项目选择一种颜色,除非您按组对其进行着色。 ? 06 变化(Change) 35....每条垂直线(在自相关图上)表示系列与滞后 0 之间的滞后之间的相关性。图中的蓝色阴影区域是显着性水平。那些位于蓝线之上的滞后是显着的滞后。 那么如何解读呢?...平行坐标(Parallel Coordinates) 平行坐标有助于可视化特征是否有助于有效地隔离组。如果实现隔离,则该特征可能在预测该组时非常有用。 ?
还可以创建联合分布图(marginal rugs),使用直方图,箱形图(box)或小提琴来显示双变量分布,也可以添加趋势线。...在你的Jupyter 笔记本中查看这些单行及其启用的交互: ? 散点图矩阵(SPLOM)允许您可视化多个链接的散点图:数据集中的每个变量与其他变量的关系。 数据集中的每一行都显示为每个图中的一个点。...平行坐标允许您同时显示3个以上的连续变量。 dataframe 中的每一行都是一行。 您可以拖动尺寸以重新排序它们并选择值范围之间的交叉点。 ?...可视化数据有很多原因:有时您想要提供一些想法或结果,并且您希望对图表的每个方面施加很多控制,有时您希望快速查看两个变量之间的关系。 这是交互与探索的范畴。...仅接受整洁输入所带来的最终优势是它更直接地支持快速迭代:您整理一次数据集,从那里可以使用 px 创建数十种不同类型的图表,包括在 SPLOM 中可视化多个维度 、使用平行坐标、在地图上绘制,在二维、三维极坐标或三维坐标中使用等
比较(四)利用python绘制平行坐标图 平行坐标图(Parallel coordinate plot)简介 平行坐标图可以显示多变量的数值数据,最适合用来同一时间比较许多变量,并表示它们之间的关系。...years = [1952, 1957] df = df[df['year'].isin(years)] # 计算每个大陆每年的平均 GDP df = df.groupby(['continent'...fontweight='bold') plt.text(1957.1, 11000, 'AFTER', fontsize=12, color='black', fontweight='bold') # 绘制每个大陆的线...plt.plot(years, df.loc[continent], marker='o', label=continent, color=color) # 每年添加各大洲的标签 for continent_name...和plotly的parallel_coordinates快速绘制平行坐标图,并利用seaborn和matplotlib绘制类平行坐标图。
还可以创建联合分布图(marginal rugs),使用直方图,箱形图(box)或小提琴来显示双变量分布,也可以添加趋势线。...在你的Jupyter 笔记本中查看这些单行及其启用的交互: ? 散点图矩阵(SPLOM)允许你可视化多个链接的散点图:数据集中的每个变量与其他变量的关系。数据集中的每一行都显示为每个图中的一个点。...平行坐标允许你同时显示3个以上的连续变量。dataframe 中的每一行都是一行。你可以拖动尺寸以重新排序它们并选择值范围之间的交叉点。 ?...可视化数据有很多原因:有时你想要提供一些想法或结果,并且你希望对图表的每个方面施加很多控制,有时你希望快速查看两个变量之间的关系。这是交互与探索的范畴。...仅接受整洁输入所带来的最终优势是它更直接地支持快速迭代:你整理一次数据集,从那里可以使用 px 创建数十种不同类型的图表,包括在 SPLOM 中可视化多个维度 、使用平行坐标、在地图上绘制,在二维、三维极坐标或三维坐标中使用等
平行坐标图 ? 平行坐标图 (Parallel Coordinates Plots) 能显示多变量的数值数据,最适合用来比较同一时间的多个变量,并展示它们之间的关系。...当数据密集时,平行坐标图容易变得混乱、难以辨认。解决办法是通过互动技术,突出显示所选定的一条或多条线,同时淡化所有其他线条,让我们能更集中研究感兴趣的部分,并滤除干扰数据。...图表其中一条轴代表要比较的具体类别,另一条则用作离散数值的标尺。 条形图的离散数据是分类数据,针对的是单一类别中的数量多少,而不会显示数值在某时间段内的持续发展。...我们在地图上每个区域以不同深浅度的颜色表示数据变量,例如从一种颜色渐变成另一种颜色、单色调渐进、从透明到不透明、从光到暗,甚至动用整个色谱。 但缺点是无法准确读取或比较地图中的数值。...在绘制记数符号图表时,将类别、数值或间隔放置在同一个轴或列(通常为 Y 轴或左侧第一列)上。每当出现数值时,在相应的列或行中添加记数符号。
散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和基本的图表。如果数据中有多个组,则可能需要以不同颜色可视化每个组。...下图显示了数据中各组之间最佳拟合线的差异。要禁用分组并仅为整个数据集绘制一条最佳拟合线,请从 sns.lmplot() 调用中删除 hue ='cyl' 参数。...在下面的图表中,我为每个项目使用了不同的颜色,但您通常可能希望为所有项目选择一种颜色,除非您按组对其进行着色。 06 变化(Change) 35....每条垂直线(在自相关图上)表示系列与滞后 0 之间的滞后之间的相关性。图中的蓝色阴影区域是显着性水平。那些位于蓝线之上的滞后是显着的滞后。 那么如何解读呢?...平行坐标(Parallel Coordinates) 平行坐标有助于可视化特征是否有助于有效地隔离组。如果实现隔离,则该特征可能在预测该组时非常有用。
单变量图(chart for one variable)是指使用数据组的一个变量进行相应图的绘制。想要可视化这个变量,就需要根据不同的数据变量类型绘制图。...首先需要对数据组进行分组,然后统计每个分组内数据元的个数,最后使用一系列宽度相等、高度不等的长方形来表示相应的每个分组内的数据元个数。...因此可以绘制一条以区间个数为参数的曲线。如果两个分布相似,则该 Q-Q 图趋近于落在 y = x 线上。如果两个分布线性相关,则点在 Q-Q 图上趋近于落在一条直线上。...而想要使用 Q-Q 图对某一样本数据进行正态分布的鉴别时,只需观察 Q-Q 图上的点是否近似在一条直线附近,且该条直线的斜率为标准差,截距为均值。...x.min()) / bins ax.plot(x, p*N*bin_width,linewidth=1,color="r",label="Normal Distribution Curve") # 添加平均值线
分析数据点的探索性数据分析(EDA)是在算法的数据建模之前制定假设的正确步骤。 ? 数据科学行业中一个最常见的陷阱是花费数小时为他们的项目寻找最佳算法,而没有花足够的时间首先理解数据。...hexpins是解决重叠点散点图的一个很好的替代方案。每个点不是在hexbin图中单独绘制的。...当我们延迟绘制一个非随机数据序列时,如下面的代码所示,我们得到了一条平滑的线条。...平行坐标图(Parallel coordinates) 把我们的大脑包围起来并将其可视化不仅仅是三维数据,这一直是一个挑战。绘制高维数据集的平行坐标非常有用。每个尺寸用一条垂直线表示。...垂直线表示小部件的每个功能。一系列连续的线段代表“小”和“大”小部件的特征值。 ? 下面的代码绘制了seaborn中“attention”数据集的平行坐标。请注意,群集的点看起来更靠近。
1、散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和基本的图表。如果数据中有多个组,则可能需要以不同颜色可视化每个组。...在下面的图表中,我为每个项目使用了不同的颜色,但您通常可能希望为所有项目选择一种颜色,除非您按组对其进行着色。颜色名称存储在下面代码中的all_colors中。...每条垂直线(在自相关图上)表示系列与滞后0之间的滞后之间的相关性。图中的蓝色阴影区域是显着性水平。那些位于蓝线之上的滞后是显着的滞后。...您可以在下面看到一些基于每天不同时间订单的示例。另一个关于45天持续到达的订单数量的例子。 在该方法中,订单数量的平均值由白线表示。并且计算95%置信区间并围绕均值绘制。...如果要素(数据集中的列)无法区分组(cyl),那么这些线将不会很好地隔离,如下所示。 50、平行坐标 (Parallel Coordinates) 平行坐标有助于可视化特征是否有助于有效地隔离组。
5、平行坐标图 平行坐标图 (Parallel Coordinates Plots) 能显示多变量的数值数据,最适合用来比较同一时间的多个变量,并展示它们之间的关系。...当数据密集时,平行坐标图容易变得混乱、难以辨认。解决办法是通过互动技术,突出显示所选定的一条或多条线,同时淡化所有其他线条,让我们能更集中研究感兴趣的部分,并滤除干扰数据。...图表其中一条轴代表要比较的具体类别,另一条则用作离散数值的标尺。 条形图的离散数据是分类数据,针对的是单一类别中的数量多少,而不会显示数值在某时间段内的持续发展。...多组条形图通常用来将分组变量或类别与其他数据组进行比较,也可用来比较迷你直方图,每组内的每个条形将表示变量的显著间隔。 但缺点是,当有太多条形组合在一起时将难以阅读。...轴与轴之间的网格线通常只作指引用途。每个变量数值会画在其所属轴线之上,数据集内的所有变量将连在一起形成一个多边形。
<- fator(aa$sesn) 我们对数据采取的最后一步是添加季编号,以便以后能够在绘图上区分它们。...我们使用除以 22 的余数来计算季,修复特殊情况,并将变量分解为绘图目的。...还计算了最小和最大集数,以便能够绘制每个季节的水平段。由于我们将之前的绘图保存为 ggplot2 对象,因此添加线条只需要对额外的图形元素进行编码并将其添加到保存的元素之上。 # 计算季平均值。...(easn), summrs, ma = mean), xmi= in(X, xmx = ma(X) # 将平均值添加到绘图中。...基本图都将使用相同的数据,我们将在其上叠加一条通过不同方法计算的趋势线。
:地理坐标散点图 在地理散点图中,每一行data_frame都由地图上的符号标记表示; 7、line:线条图 在2D线图中,每行data_frame表示为2D空间中折线标记的顶点; 8、line...data_frame表示为Mapbox地图上折线标记的顶点; 12、line_geo:地理坐标线条图 在地理线图中,每一行data_frame表示为地图上折线标记的顶点; 13、area:...彼此相对绘制; 27、parallel_coordinates:平行坐标图 在平行坐标图中,每行data_frame由折线标记表示,该折线标记穿过一组平行轴,每个平行轴对应一个平行轴 dimensions...choropleth地图中,每一行的数据由Mapbox地图上的一个彩色区域表示。...31、density_contour:密度等值线图(双变量分布) 在密度等值线图中,行data_frame被组合在一起,成为轮廓标记,以可视化该值的聚合函数histfunc(例如:计数或总和)的2D
领取专属 10元无门槛券
手把手带您无忧上云