首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

特征工程-主成分分析PCA

简介 ---- 主成分分析(Principle Component Analysis,PCA)是常用的降维方法,用较少的互不相关的新变量来反映原变量所表示的大部分信息,有效解决维度灾难问题。...一种直观的解释是,主成分是对所有样本点的一种投影,且我们希望投影后可以尽可能的分开,即使得投影后样本点的方差最大化。不难理解,方差越大,越能反映数据特征。...上图摘自https://blog.csdn.net/qq_35164554/article/details/101058673 主成分分析包括如下几个步骤: 计算均值 计算协方差 计算协方差矩阵对应的特征值和特征向量...第一主成分贡献率很大,取k=1即可,将二维特征降维一维,即用第一主成分,计算降维后的数据: 样品1新特征: \frac{4}{\sqrt{17}}×1+\frac{1}{\sqrt{17}}×2≈1.46...样品2新特征: \frac{4}{\sqrt{17}}×5+\frac{1}{\sqrt{17}}×3≈5.78 python代码 ---- 使用sklearn库中的PCA()函数进行主成分分析。

81730

机器学习重要算法-PCA主成分分析

主成分分析最主要的用途在于“降维”.通过析取主成分显出的最大的个别差异,也可以用来削减回归分析和聚类分析中变量的数目....举个例子,你要做一项分析,选中了20个指标,你觉得都很重要,但是20个指标对于你的分析确实太过繁琐,这时候,你就可以采用主成分分析的方法进行降维. 20个指标之间会有这样那样的相互关系,相互之间会有影响...loadings()函数主要显示主成分分析或者因子分析当中的loadings的内容,在主成分分析中,实际上是对主成分对应的各列,即正交矩阵.在因子分析中,其内容就是载荷因子矩阵,loadings()函数的使用格式为...在上述程序中,summary函数列出了主成分分析的重要信息,Standard deviation行表示的是主成分的标准差,即主成分的方差的开方,也就是想应的特征值的开方,proporcrion of Variance...行表示的是方差的贡献率,Cumulative Proportion行表示的是方差的累计贡献率 由于summary函数中的参数中选取了loadings = true,因此列出的的loading内容实际上就是主成分对应原始变量

2.4K90
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    主成分分析的数学涵义

    1、主成分分析的概念 主成分分析(Principle Component Analysis,PCA)是将多个指标化为少数几个综合指标的一种统计分析方法,是一种降维的方式 将多个变量转化为几个少数主成分的方法...图3 主成分分析的直观解释图 图3,作为主成分分析的直观解释图,可以看出长且粗的线段,相当于数量处理中的y1,短且细的线段,相当于数量关系中的y2,图中很明了的可以看出,大多数点与聚集在y1附近,少量的点聚集在...3、主成分分析的目的 根据主成分分析的概念,我们可以了解到主成分分析的目的无非是想把难的问题简单化,用较少的变量去解释原数据中的大部分变异(此处变异可以理解为方差),期望能够将相关性很高的多数变量转化成互相独立的变量...主成分分析的成分yi和原来变量xi之间的关系: y1=μ11x1+μ12x2+……μ1pxp= μ’1x y2=μ21x1+μ22x2+……μ2pxp=μ’2x …… yp=μp1x1+μp2x2+…...…μppxp= μ’px 其中y1、y2、yp分别表示第1主成分、第2主成分、第p主成分,μij表示为第i个主成分yi第j个变量xj之间的线性系数。

    1.3K50

    pathwayPCA:基于主成分分析的通路分析

    背景介绍 由于可用的分子信息数量庞大,主成分分析(PCA)是一种降低数据维数以捕获个体基因或主体变异的方法。...特别是,主成分(PCs)以前曾被用作从多重基因表达中提取的sample-specific的特征。然而,当通路中的基因数量较大时,与表型无关的基因可能会引入噪音,模糊基因集关联信号。...(3)根据所选基因计算主成分(PCs)。这些评估的潜在变量代表了个体受试者的通路活性,然后可以用于执行综合通路分析,如多组学分析。...、elastic-net和sparse主成分(pc),从每个pathway-subset组学分析设计矩阵的特性,测试它们与响应矩阵的关联性,并返回一个每个通路校正后P值的数据框。...,那么重点是怎样让你的工作准确有意义,pathwayPCA能够识别通路特异的主成分,使通路分析更加精细,还提供了各种分析功能。

    1.5K20

    Google Earth Engine(GEE)——协方差、特征值、特征向量主成分分析(部分)

    的主成分(PC)的变换(又称为Karhunen-Loeve变换)是一种光谱转动所需要的光谱相关的图像数据,并输出非相关数据。PC 变换通过特征分析对输入频带相关矩阵进行对角化来实现这一点。...为此目的考虑以下函数(这是完整示例的一部分 ): 先看函数: eigen()特征向量 计算 A 行 A 列的二维方形数组的实数特征向量和特征值。...返回一个包含 A 行和 A+1 列的数组,其中每一行在第一列中包含一个特征值,在其余 A 列中包含相应的特征向量。行按特征值降序排列。...// 这表示区域内的带间协方差。 var covarArray = ee.Array(covar.get('array')); // 执行特征分析并将值和向量分开。...getNewBandNames('pc')]) // Normalize the PCs by their SDs. .divide(sdImage); }; // 这个函数基本上涵盖了主成分分析和归一化的过程

    21810

    【算法系列】主成分分析的推导过程

    因此,λ必须是协差阵∑的一个特征根,而a1则是与此特征根相对应的特征向量。 ? 如果只用第一主成分可能丧失的信息太多,这样往往还需要计算p个原始指标的第二主成分y2。...即x1,x2,…,xp的主成分就是以∑的特征向量为系数的线性组合,它们互不相关,其方差为∑特征根。...标准化后的变量的协差阵就是原变量的相关阵,所以标准化原始变量的主成分可以根据相关阵来求出。 ? 假设市场上肉类x1、鸡蛋x2、水果x3三种商品价格的月份资料的协方差矩阵为: ?...⑶于是,三种商品价格的三个主成分分别为: ? ⑷三个主成分的方差分别为: ? 第一个主成分的方差占了原始指标的总方差的绝大部分,所以第一主成分综合反映了三种商品价格的绝大部分变动。...标准化后的变量的协差阵就是原变量的相关阵,所以标准化原始变量的主成分可以根据相关阵来求出。

    1.3K40

    聊聊基于Alink库的主成分分析(PCA)

    主成分分析的基本思想可以总结如下: 寻找新的特征空间:PCA通过线性变换,寻找一组新的特征空间,使得新的特征具有以下性质: 主成分具有最大的方差,尽可能保留原始数据的信息。...主成分分析的步骤如下: 中心化数据:将原始数据进行中心化,使得数据的均值为零。 计算协方差矩阵:计算特征之间的协方差矩阵,描述了特征之间的线性关系。...计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。 选择主成分:按照特征值的大小选择保留的主成分数量,通常选择方差较大的前几个主成分。...得到新的特征空间:将原始特征投影到选定的主成分上,得到新的特征空间。 主成分分析的应用包括降维、去除数据噪声、数据可视化、特征选择等。...通过保留最重要的特征,可以在减少数据维度的同时保持对数据的关键信息进行捕获。 在实际使用中,有时会将各个变量进行标准化,此时的协方差矩阵就相当于原始数据的相关系数矩阵。

    22720

    小孩都看得懂的主成分分析

    小孩都看得懂的神经网络 小孩都看得懂的推荐系统 小孩都看得懂的逐步提升 小孩都看得懂的聚类 小孩都看得懂的主成分分析 本文所有思路都来自 Luis Serrano 的油管视屏「Principle Component...6 在以上线性转换中,有两个非常重要的向量,它们方向不变,长度改变。这样的向量称为特征向量,对应向量的长度称为特征值。如下图所示。 ? 红色和青色向量是特征向量,它们方向不变。...7 讲完特征向量和特征值后,我们可以介绍 PCA 的操作了,一句话,PCA 将数据投影到特征向量 (主成分) 上,而特征值代表数据投影后的方差大小。 ?...因此降维操作可是看成是选择特征值比较大的几个主成分作为特征。如上图,我们只保留了第一个主成分 (特征值 11),而去除了第二个主成分 (特征值 1)。 这样 2 维数据就变成了 1 维数据。...因此第二个主成分的特征值 1 比第一个主成分特征值 11 小很多,那么将其去除不会丢失太多信息的。 从下面两图也可以看出。 ? ? 总结 ? 回到开始的场景,来总结一下 PCA 的完整操作。

    74720

    简单易学的机器学习算法——主成分分析(PCA)

    降维的操作可以理解为一种映射关系,例如函数 ? ,即由原来的二维转换成了一维。处理降维的技术有很多种,如前面的SVD奇异值分解,主成分分析(PCA),因子分析(FA),独立成分分析(ICA)等等。...二、PCA的概念 PCA是一种较为常用的降维技术,PCA的思想是将 ? 维特征映射到 ? 维上,这 ? 维是全新的正交特征。这 ? 维特征称为主元,是重新构造出来的 ? 维特征。...其中,第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴选取的是与第一个坐标轴正交且具有最大方差的方向,依次类推,我们可以取到这样的 ? 个坐标轴。...对特征值进行排序,显然就两个特征值 选择最大的那个特征值对应的特征向量 ? 转换到新的空间 ? 四、实验的仿真 我们队一个数据集进行了测试: ?...(4)-线性判别分析(LDA), 主成分分析(PCA) 对于本文有任何问题,欢迎邮件或者微博私信,具体联系方式见博客左侧。

    88231

    主成分分析和因子分析在SPSS中的实现

    由 Component1 的这一列系数除以SQRT(7.22),Component2的系数除以SQRT(1.235),就得到了主成分分析所需特征向量:具体的主成分的计算方法见主成分分析和因子分析(1)主成分的性质...Spss 中选取主成分的方法有两个:一是根据特征根≥ 1 来选取; 另一种是用户直接规定主成分的个数来选取。   特征值的贡献还可以从 SPSS 的所谓碎石图看出。   ...3 、主成分和因子分析的一些注意事项   可以看出,因子分析和主成分分析都依赖于原始变量,也只能反映原始变量的信息。所以原始变量的选择很重要。   ...4,主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分 一般是独特的;而因子分析中因子不是独特的,可以旋转得到不到的因子。   ...总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前 ,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。

    4.1K51

    Python使用信息增益计算分类或决策算法中最重要的特征

    问题描述: 信息熵可以用来衡量事件不确定性的大小,熵越大表示不确定性越大。对于特定的随机变量,信息熵定义为每个事件的概率与概率的2-对数的乘积的相反数之和,即 ?...信息增益表示使用某个特征进行分类时不确定性减少的程度,在使用该特征进行分类后,每个子类中该特征的值都是固定的。信息增益的值为分类前信息熵与分类后每个子类的信息熵加权平均的差,即 ?...其中,Xi表示每个子类,|Xi|表示该子类中样本的数量。 如果根据某个特征的值对原始数据进行分类后,信息增益最大,那么该特征为最重要的特征。...这种方法会有误差,如果某列特征的唯一值数量非常多,会得到很大的信息增益,可以使用信息增益率进行纠正,本文不考虑这个问题。 参考代码: ? 运行结果: ? ?

    1.2K20

    【算法系列】主成分分析的数学模型

    定义 主成分分析又称主分量分析或主轴分析,是将多个指标化为少数几个综合指标的一种多元统计分析方法.从数学角度来看,这是一种降维处理技术。通常把转化生成的综合指标称之为主成分。...主成分分析的一般数学模型 ? ?...因此,p个原始观测变量的第一主成分就应该是这p个原始观测变量的所有线性组合中方差最大的那个综合指标,第二主成分就应该是这p个原始观测变量的所有线性组合中方差次大的那个综合指标,∙∙∙,第p个主成分就应该是这...如果第一主成分不足以代表原来p个变量的绝大部分信息,则往往还要计算p个原始指标的第二主成分y2。...,这些权数反映了各种成分相对重要性的数量,从主成分的观点来探讨这个问题,主成分分析所构成的第一主成分正是这一问题的答案,它提供了自身的权重系数。)

    1.3K30

    【算法系列】主成分分析的几何意义

    进行分析,而是先对向量x进行线性变换,形成少数几个新的综合变量y1,y2,…,ym,使得各综合变量之间相互独立且能解释原始变量尽可能多的信息,这样,在以损失很少部分信息为代价的前提下,达到简化数据结构,...提高分析效率的目的。...主成分分析的几何意义 设有N个样品,每个样品有两个观测变量X1,X2,这样,在由变量X1,X2组成的坐标空间中,N个样品散布的情况如带状,如下图。 ?...当只考虑X1和X2中的任何一个时,原始数据中的信息将会有较大的损失。 考虑X1和X2的线性组合,使原始样品数据可以由新的变量Y1和Y2来刻画,在几何上表示就是将坐标轴按逆时针方向旋转 ?...因此,经过上述旋转变换就可以把原始数据的信息集中到Y1轴上,对数据中包含的信息起到了浓缩的作用,进行主成分分析的目的就是找出转换矩阵U,而进行主成分分析的作用与几何意义也就很明了了。

    3.4K30

    基于sklearn的主成分分析理论部分代码实现

    理论部分 特征降维 特征降维是无监督学习的一种应用:将n维的数据降维为m维的数据(n>m)。...可应用于数据压缩等领域 主成分分析(PCA) 主成分分析是一种常用的特征降维方法,对于m维的数据A,可以降维获得一个n维的数据B(m>n),满足$B = f(A)$且$A \approx g(f(A))...当进行主成分分析时,优化目标为$c = argmin ||x - g(c)||_{2}$,其中c为编码,g(c)为解码函数 代码实现 导入数据集 import numpy as np import pandas...digits_train[np.arange(64)],digits_train[64] test_x,test_y = digits_test[np.arange(64)],digits_test[64] 主成分分析...estimator.fit_transform(train_x) pca_test_x = estimator.transform(test_x) 训练支持向量机 from sklearn.svm import LinearSVC 原始数据

    91680

    简单易学的机器学习算法——主成分分析(PCA)

    降维的操作可以理解为一种映射关系,例如函数 ? ,即由原来的二维转换成了一维。处理降维的技术有很多种,如前面的SVD奇异值分解,主成分分析(PCA),因子分析(FA),独立成分分析(ICA)等等。...二、PCA的概念 image.png 三、PCA的操作过程     1、PCA的操作流程大致如下: 去平均值,即每一位特征减去各自的平均值 计算协方差矩阵 计算协方差矩阵的特征值与特征向量 对特征值从大到小排序...保留最大的k个特征向量 将数据转换到k个特征向量构建的新空间中     2、具体的例子         假设二维数据为: ?...对特征值进行排序,显然就两个特征值 选择最大的那个特征值对应的特征向量 ? 转换到新的空间 ? 四、实验的仿真 我们队一个数据集进行了测试: ?...(4)-线性判别分析(LDA), 主成分分析(PCA) 对于本文有任何问题,欢迎邮件或者微博私信,具体联系方式见博客左侧。

    86250

    品玩SAS:主成分分析——化繁为简的降维打击

    主成分分析的步骤 (1)原始数据标准化 (2)计算标准化变量间的相关系数矩阵 (3)计算相关系数矩阵的特征值和特征向量 (4)计算主成分变量值 (5)统计结果分析,提取所需的主成分 本期“品玩SAS”以主成分分析为题...x1-x8(以下简称原始变量)做主成分分析*/ out=PCA_change /*输出结果(包含源数据的所有变量及新增的主成分变量)放在PCA_change数据集*/ prefix=feature /*...图3 相关矩阵特征值 特征值列由大到小依次展示8个特征值,特征值越大表示对应的主成分变量包含的信息越多,对原始变量的解释力度越强。差分列表示相邻两行特征值之间的差值。...比例列表示主成分的贡献率,计算公式为:该行特征值/全部特征值之和,例如第一行表示第一主成分的贡献率为43.14%。...图4 特征向量 特征向量的每一列表示该主成分受原始变量的影响程度,系数绝对值越大表明原始变量对主成分的影响程度越强。

    1K30

    如何快速分析样本之间的相关性(主成分分析):Clustvis

    首先给大家介绍一下主成分分析(PCA)的定义,PCA是一种通过正交变换将一组可能存在相关性的变量转换为不相关的变量的统计方法,这些转换后的变量就被称为主成分(来自维基百科)。...对于生物信息和统计的科研工作者而言,生物学领域的数据由于生物与环境、生物之间和生物自身基因、代谢等相互作用的高度复杂,往往具有变量多、样本数较少的特点,这个时候我们通过主成分分析(PCA)就可以快速发现数据背后隐藏的关系...我们可以看到PCA分析过程实际上已经完成了一部分,上图中的前三个表格展示了数据的大小和missing value的个数,第四个表格按从大到小的顺序给出了每个主成分(PC)对方差的贡献度。...同样的,我们可以通过左边导航栏自定义分析的过程,包括了对原始数据求对数的处理(transformation),样本信息的保留(column annotation groups to keep,这个选项主要影响后面可视化的结果...change data options:默认的可视化结果是以PC1、PC2为XY轴的点图,在这个选项下面我们可以选择以其他的主成分为坐标轴来展示结果,可惜的是网页版ClustVis还只支持二维点图。。。

    5.9K30
    领券