首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

聚类分析和主成分分析

聚类分析和主成分分析 来自黄思思(浙江大学八年制医学生,生信技能树全国巡讲杭州站优秀学员)投稿 聚类分析 01 系统聚类 示例数据一:现有16种饮料的热量、咖啡因含量、钠含量和价格的数据,根据这4个变量对...主成分分析 由于变量个数太多,且彼此有相关性,从而数据信息重叠。...当变量较多,在高维空间研究样本分布规律较复杂 于是我们希望,用较少的综合变量代替原来较多变量,又能尽可能多地反映原来数据的信息,并且彼此之间互不相关。 叮!这就孕育了主成分分析!...下面这张图就形象地展现了如何利用主成分分析将二维降至一维。 注意,当数据集中的变量高度相关时,PCA 方法特别有用。相关性表明数据中存在冗余。...示例数据三 :我国2010年各地区城镇居民家庭平均每人全年消费数据,这些数据指标分别从食品(x1),衣着,居住,医疗,交通,通信,教育,家政和耐用消费品来描述消费。试对该数据进行主成分分析。

68430

聚类分析和主成分分析

聚类分析和主成分分析 来自黄思思(浙江大学八年制医学生,生信技能树全国巡讲杭州站优秀学员)投稿 聚类分析 01 系统聚类 示例数据一:现有16种饮料的热量、咖啡因含量、钠含量和价格的数据,根据这4个变量对...主成分分析 由于变量个数太多,且彼此有相关性,从而数据信息重叠。...当变量较多,在高维空间研究样本分布规律较复杂 于是我们希望,用较少的综合变量代替原来较多变量,又能尽可能多地反映原来数据的信息,并且彼此之间互不相关。 叮!这就孕育了主成分分析! ? ? ? ?...下面这张图就形象地展现了如何利用主成分分析将二维降至一维。 ? 注意,当数据集中的变量高度相关时,PCA方法特别有用。相关性表明数据中存在冗余。...示例数据三 :我国2010年各地区城镇居民家庭平均每人全年消费数据,这些数据指标分别从食品(x1),衣着,居住,医疗,交通,通信,教育,家政和耐用消费品来描述消费。试对该数据进行主成分分析。

2.7K54
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python pca主成分_主成分分析pca本质和python案例研究

    参考链接: Python 主成分分析(PCA) python pca主成分      Data is the fuel of big data era, and we can get insightful...对于降维,主成分分析(PCA)是最流行的算法。 PCA是一种将原始特征编码为紧凑表示形式的算法,我们可以删除“不重要”的特征,同时仍保留大多数有用的信息。...PCA算法的原理是基于原始数据创建一组新特征,并对新特征的方差排序,最后创建一组主成分。 为什么将方差视为最重要的指标,这是因为特征值的更多方差可以为机器学习模型提供更好的预测能力。...在将两个原始特征(x1和x2)组合之后,U的新特征成为数据集的第一个主成分,而V是第二个主成分。...主成分将原始数据转换为新的维空间,在该空间中,U解释大多数数据方差,V解释小部分数据方差。         3. PCA的实施 (3.

    89500

    主成分分析和时序分析神器

    接下来小编将给大家介绍如何通过ggfortify和ggplot2进行主成分分析和时序分析等多种图片的可视化!...R包的使用 01 时序分析可视化 使用AirPassengers数据集绘制基本时序分析图片 #AirPassengers数据集 autoplot(AirPassengers) 使用 ts.colour...autoplot(Canada, facets = FALSE)#fig.3 fig.1 fig.2 fig.3 02 主成分分析 首先绘制最基本的图形(使用iris数据集): df <- iris...[, -5] # 主成分分析 pca <- prcomp(df, scale. = TRUE) # 绘图 autoplot(pca, loadings = TRUE, loadings.label =...虽然ggfortify已经在CRAN上,但是由于它很多的功能都还在快速增加,还是推荐大家从Github上下载和安装。大家在做主成分分析等统计分析过程中都可以用到哦!

    68210

    数据分析,主成分分析例题

    已知协方差矩阵求X的各主成分以及主成分的贡献率 主成分分析 原理:找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,且彼此之间互不相关 统计方法:主成分分析(主分量分析...) 主成分分析步骤 1.根据已知协方差矩阵,求出相应的特征值(特征根) 令|kE-A|=0(其中k是特征值),求出的k就是所需要的特征值 2.求出对应特征值的特征向量 解方程|kE-A|X=0,求X的所有情况...(参考高等代数的第三章解线性方程组) 求出基本解系,设定自由未知量的值 (X是向量) 3.对所求出来的特征向量进行正交化 正交化:使得两个向量线性无关 (详细方法下面解题过程中有) 4.对于正交化后的向量进行单位化...使正交化后的向量进行单位化 5.选择重要的主成分并写出主成分表达式 对应的单位正交化后的向量对应系数 6.计算主成分得分 7.依据主成分得分的数据进行进一步的统计分析 下面是例题的求解过程 总结...矩阵计算的基础,行列式的基本运算,求特征值和特征根,掌握这三点,基本这个题就可以做了,考试的时候计算不要占用太多的时间 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。

    1.6K21

    主成分分析(PCA)的教程和代码

    主成分分析(PCA)是一种简单而强大的降维技术。通过它,我们可以直接减少特征变量的数量,进而缩小重要特征并节省计算量。...从高层次来看,PCA有三个主要步骤: (1)计算数据的协方差矩阵 (2)计算该协方差矩阵的特征值和向量 (3)使用特征值和向量选择最重要的特征向量,然后将数据转换为这些向量以降低维数!...为实现此目的,我们首先将数据标准化为零均值和单位方差,以便在我们的计算中对每个特性进行平均加权。...我们协方差矩阵的特征向量(主成分)表示新特征空间的向量方向,而特征值表示这些向量的大小。...这个百分比量化了在全部100%的主成分中,每个主成分所包含的信息(方差)。 我们举一个例子来说明。假设我们有一个数据集最初有10个特征向量。

    2.5K30

    R语言主成分和因子分析

    主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分。...1.R中的主成分和因子分析 R的基础安装包中提供了PCA和EFA的函数,分别为princomp ()和factanal() psych包中有用的因子分析函数 函数 描述 principal() 含多种可选的方差放置方法的主成分分析...) 绘制因子分析或主成分分析的载荷矩阵 scree() 因子分析和主成分分析的碎石图 PCA/EFA 分析流程: (1)数据预处理;PCA和EFA都是根据观测变量间的相关性来推导结果。...碎石头、特征值大于1准则和100次模拟的平行分析(虚线)都表明保留一个主成分即可保留数据集的大部分信息,下一步是使用principal()函数挑选出相应的主成分。...此处,输入的是没有ONT变量的原始,并指定获取一个未旋转的主成分。由于PCA只对相关系数矩阵进行分析,在获取主成分前,原始数据将会被自动转换为相关系数矩阵。

    2.6K40

    HAWQ + MADlib 玩转数据挖掘之(六)——主成分分析与主成分投影

    一、主成分分析(Principal Component Analysis,PCA)简介         在数据挖掘中经常会遇到多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。...主成分分析方法可以将多个变量综合为少数几个代表性变量,使这些变量既能够代表原始变量的绝大多数信息又互不相关,这种方法有助于对问题的分析和建模。        ...Madlib提供了两个主成分分析函数:训练函数与投影函数。训练函数以原始数据为输入,输出主成分。投影函数将原始数据投影到主成分上,实现线性无关降维,输出降维后的数据矩阵。 1....(1)对原始数据进行标准化处理 (2)计算样本相关系数矩阵 (3)计算相关矩阵的特征值和相应的特征向量 (4)选择重要的主成分,并写出主成分表达式 (5)计算主成分得分 (6)依据主成分得分数据,进一步对问题进行后续的分析和建模...主成分分析法的原理应用及计算步骤:详述PCA的数学计算步骤。 《大数据挖掘——系统方法与实力分析》:讲述主成分分析的基本原理及其案例。

    1.2K60

    主成分分析降维(MNIST数据集)

    今天看了用主成分分析简化数据,就顺便用MNIST数据集做了下实验,想直观地看一下效果,并通过完成这个小demo深入理解下原理。...主成分分析是什么 主成分分析(Principal Component Analysis,PCA),一种降维方法,在PCA中,数据从原来的坐标系转换到了新的坐标系,新坐标系由数据本身决定,在新坐标系中,...主成分分析怎么用 要做的事就是使用tensorflow里的MNIST数据集,取前100张图片中所有的手写数字7图片,对他们进行主成分分析,输出经过降维反变换回去的图片,对比差异,看看降维后的效果。...主成分析的原理是什么 前面转坐标轴从理论上考虑,这里主要从数学的角度考虑。 第一个主成分是数据差异最大(方差最大)的方向,第二个主成分是数据差异次大且与第一个主成分正交的方向。...主成分分析的优缺点是什么 优点:降低数据的复杂性,识别最重要的特征 缺点:不一定需要,且可能损失有用信息 适用数据类型:数值型数据

    1.8K60

    案例实战 | 主成分分析实现数据描述

    在那篇文章中我们指出的主成分分析常见的三个应用场景中,其中有一个是「数据描述」,以描述产品情况为例,比如著名的波士顿矩阵,子公司业务发展状况,区域投资潜力等,需要将多变量压缩到少数几个主成分进行描述,压缩到两个主成分是最理想的...但因子分析的知识点非常庞杂,所以本文将跳过原理,直接通过案例再次「实战PCA分析」,用于主成分分析到因子分析的一个过渡,目标有两个: 能够通过主成分分析结果来估计生成的主成分所表示的含义 借以引出因子分析的优势和学习的必要性是本文的目标...第一个主成分在表达经济总量的指标上的权重相当,可考虑命名为经济总量水平;而第二个主成分只在人均GDP上权重很高,可暂时考虑命名为人均水平 注意:这里的给主成分命名(包括后续有关因子分析的推文)都是对降维后的数据进行的...,而不是生成的主成分,这样才有比较和描述的价值。...其实PCA并不能非常好的满足维度分析的需求,能够做到「因子分析」最好,它是主成分方法的拓展,作为维度分析的手段,因子分析也是构造合理的聚类模型和稳健的分类模型的必然步骤。

    1.2K20

    主成分分析的数学涵义

    1、主成分分析的概念 主成分分析(Principle Component Analysis,PCA)是将多个指标化为少数几个综合指标的一种统计分析方法,是一种降维的方式 将多个变量转化为几个少数主成分的方法...2、主成分的直观解释 就是将原来许多具有关联性的指标,重新处理数据,形成一组新的相互无关的综合指标来代替原有指标,数学处理过程就是将原来p个指标做线性组合,作为新指标。...图1 主成分分析的几何解释 R语言的运用 假设x1和x2分别表示一个班级的男女的身高体重,做相关图以显示变量间的关系 >x1=c(147,171,175,159,155,152,158,154,164,168,166,159,164,177...3、主成分分析的目的 根据主成分分析的概念,我们可以了解到主成分分析的目的无非是想把难的问题简单化,用较少的变量去解释原数据中的大部分变异(此处变异可以理解为方差),期望能够将相关性很高的多数变量转化成互相独立的变量...主成分分析的成分yi和原来变量xi之间的关系: y1=μ11x1+μ12x2+……μ1pxp= μ’1x y2=μ21x1+μ22x2+……μ2pxp=μ’2x …… yp=μp1x1+μp2x2+…

    1.3K50

    数据处理|主成分分析法

    本文首发于微信公众号:"算法与编程之美" 主成分分析法,简称PCA,主要运用于数据的降维处理,提取更多有价值的信息(基于方差),涉及知识主要是线性代数中的基变换、特征值和特征向量。...问题提出 1.为什么要对数据进行降维处理? 2.怎么对数据进行降维? 3.降维后数据的意义? 问题解决 1. 维度越低的数据越有利于计算机处理、分析。...就比如买菜,一组数据是元,一组数据是角,那么100元和1000角是线性相关的,这样其中一组数据的意义可能就不大。这时就要引入协方差,对其做正交处理,也就是内积等于0。...由于已经对数据进行零均值化处理,所以这里a,b的均值都为0。公式就简化为: ? 有没有发现上面的公式其实就是内积的和,我只需要令其等于零,便能做到想要的正交。...很容易就可以看出,协方差矩阵的主对角线就是由方差组成的,而副对角线就是内积。

    99520

    PCA主成分析原理、理解和代码实现

    在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律。多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的工作量。...PCA算法步骤总结 在进行之前最好先检验下数据之间的相关性: 首先进行KMO和Bartlett的检验,判断是否可以进行主成分分析。...过程详解 1、综合评价: 首先进行KMO和Bartlett的检验,判断是否可以进行主成分分析。...注意事项 主成分要求变量之间的共线性或相关关系比较强,否则不能通过 KMO 检验和 Bartlett 球形检验; 主成分分析倾向于降维,从而达到简化系统结构,抓住问题实质的目的。...对我国上市银行经营业绩的分析——基于主成分分析、因子分析和聚类分析的方法 [J]. 宿州学院学报, 2016, 31(7): 5.

    94230

    主成分分析降维(MNIST数据集)

    今天看了用主成分分析简化数据,就顺便用MNIST数据集做了下实验,想直观地看一下效果,并通过完成这个小demo深入理解下原理。...主成分分析是什么 主成分分析(Principal Component Analysis,PCA),一种降维方法,在PCA中,数据从原来的坐标系转换到了新的坐标系,新坐标系由数据本身决定,在新坐标系中,第一个坐标轴选择的是原始数据中方差最大的方向...主成分分析怎么用 要做的事就是使用tensorflow里的MNIST数据集,取前100张图片中所有的手写数字7图片,对他们进行主成分分析,输出经过降维反变换回去的图片,对比差异,看看降维后的效果。...主成分分析的原理是什么 前面转坐标轴从理论上考虑,这里主要从数学的角度考虑。 第一个主成分是数据差异最大(方差最大)的方向,第二个主成分是数据差异次大且与第一个主成分正交的方向。...主成分分析的优缺点是什么 优点:降低数据的复杂性,识别最重要的特征 缺点:不一定需要,且可能损失有用信息 适用数据类型:数值型数据

    1.3K80

    pathwayPCA:基于主成分分析的通路分析

    背景介绍 由于可用的分子信息数量庞大,主成分分析(PCA)是一种降低数据维数以捕获个体基因或主体变异的方法。...(2)利用SuperPCA和AES-PCA方法提取通路中相关基因。 (3)根据所选基因计算主成分(PCs)。这些评估的潜在变量代表了个体受试者的通路活性,然后可以用于执行综合通路分析,如多组学分析。...、elastic-net和sparse主成分(pc),从每个pathway-subset组学分析设计矩阵的特性,测试它们与响应矩阵的关联性,并返回一个每个通路校正后P值的数据框。...个主成分(PCs),测试它们与响应矩阵的关联,并返回每个通路校正p值的数据框。...,那么重点是怎样让你的工作准确有意义,pathwayPCA能够识别通路特异的主成分,使通路分析更加精细,还提供了各种分析功能。

    1.5K20

    主成分分析和因子分析在SPSS中的实现

    可以把第一和第二主成分的点画出一个二维图以直观地显示它们如何解释原来的变量的。 (二)、因子分析。 1 、因子分析的基本理论与模型;   因子分析是主成分分析的推广和发展。   ...3 、主成分和因子分析的一些注意事项   可以看出,因子分析和主成分分析都依赖于原始变量,也只能反映原始变量的信息。所以原始变量的选择很重要。   ...三、主成分分析和因子分析(2) 主成分分析和因子分析的区别   1,因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成各个变量的线性组合。   ...在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。   和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。...总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前 ,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。

    4.1K51

    R语言数据分析与挖掘(第六章):主成分分析(1)——主成分分析概论

    1.主成分分析 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。...多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在多数情况下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性,同时对分析带来不便。...由于各变量间存在一定的相关关系,因此有可能用较少的综合指标分别综合存在于各变量中的各类信息。主成分分析与因子分析就属于这类降维的方法。...主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关.通常数学上的处理就是将原来...但是,对于更高维的数据,能想象其分布吗?就算能描述分布,如何精确地找到这些主成分的轴?如何衡量你提取的主成分到底占了整个数据的多少信息?所以,我们就要用到主成分分析的处理方法。 3.

    92541

    R语言实现主成分和因子分析

    主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分。...1.R中的主成分和因子分析 R的基础安装包中提供了PCA和EFA的函数,分别为princomp ()和factanal() psych包中有用的因子分析函数 函数 描述 principal() 含多种可选的方差放置方法的主成分分析...) 绘制因子分析或主成分分析的载荷矩阵 scree() 因子分析和主成分分析的碎石图 PCA/EFA 分析流程: (1)数据预处理;PCA和EFA都是根据观测变量间的相关性来推导结果。...碎石头、特征值大于1准则和100次模拟的平行分析(虚线)都表明保留一个主成分即可保留数据集的大部分信息,下一步是使用principal()函数挑选出相应的主成分。...此处,输入的是没有ONT变量的原始,并指定获取一个未旋转的主成分。由于PCA只对相关系数矩阵进行分析,在获取主成分前,原始数据将会被自动转换为相关系数矩阵。

    2.5K40

    【算法系列】主成分分析的推导过程

    主成分的推导 ? ? 利用拉格朗日乘子,可得拉格朗日函数为: ? 它是a1的二次函数和λ的线性函数,分别对向量a1和λ微分,并令其为0,得: ? 由前面第一个方程,可得: ? ?...因此,λ必须是协差阵∑的一个特征根,而a1则是与此特征根相对应的特征向量。 ? 如果只用第一主成分可能丧失的信息太多,这样往往还需要计算p个原始指标的第二主成分y2。...在计算第二主成分时,除去类似于计算第一主成分的约束条件以外,还必须附上第二主成分与第一主成分不相关这一条件,即还须有约束条件: ? ? ? ? ? ?...⑶于是,三种商品价格的三个主成分分别为: ? ⑷三个主成分的方差分别为: ? 第一个主成分的方差占了原始指标的总方差的绝大部分,所以第一主成分综合反映了三种商品价格的绝大部分变动。...标准化后的变量的协差阵就是原变量的相关阵,所以标准化原始变量的主成分可以根据相关阵来求出。

    1.3K40
    领券