首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Python笔记:APP根据用户手机壳颜色来改变主题颜色?

某互联网公司产品经理提出了一个需求,要求APP开发人员可以做到软件根据用户的手机壳来改变软件主题颜色!!!于是开发人员和产品经理打起来了!!!于是产品经理和开发人员都被辞退了!!!讲道理这个需求真的好难!臣妾真的是做不到啊! 博主忽然意识到一个事情,早在2016年互联网就出现了一个高科技有关的新闻: 中关村在线消息:谷歌再近些天发布了两款采用“动态”效果的手机壳,他们这些手机壳可以看出是非常漂亮的,同时这款手机壳背后还“暗藏”玄机:每天自动变更手机壁纸。这是通过背后的NFC触点实现的。这款手机采用了Google Earth的主题,可以每天从谷歌地球抓取新的地貌场景当做手机壁纸,同时还可以点击快捷键获取有关于这个地点的更多信息。

02

科学瞎想系列之一一二 NVH那些事(15)

上一期讲了声波的一些传播特性,本期讲一讲声波的起源。众所周知,振动产生噪声,也就是说声波是由振动引起的,那么自然就会提出一个问题——振动和噪声的关系问题。即在介质的某处,若已知质点的振动,如何推算和评估所产生的噪声,或已知某处的噪声如何得知该点的振动。 1 振动与噪声的定量换算 我们知道,描述振动的特征量包括频率、振动位移、振动速度和振动加速度;描述噪声的特征量包括频率、声压、声强和声功率以及反映声音响度的声压级、声强级、声功率级等声级指标,振动作为噪声之母,振动和因之引起的噪声的频率自然就是一样的,这是它们之间的“遗传代码” 是它们的DNA,工程实践中也经常会用噪声的频谱来分析寻找振动源,这个不用换算。这里主要讲的是振动速度、加速度和噪声的声压、声强之间的换算关系,现就平面声波做一介绍。 假设介质中存在一个无穷大平面的振动,我们可以把它看作是一个无穷大平面的活塞在往复运动(振动),其振动的频率为f,振动的位移随时间按正弦规律变化,就会在介质中产生一个平面声波,设声波沿x轴方向传播,其波动方程为: y=Y•sin(ωt-Kx) ⑴ 式中:y为在x处的质点振动位移;Y为振幅;x为质点位置;ω为振动角频率,ω=2πf=2π/T,T为振动的周期;系数K=2π/λ,λ为声波的波长。则声速: C=ω/K=λ•f ⑵ 而振动速度为: y′=Эy/Эt=ω•Y•cos(ωt-Kx) ⑶ 振动速度的幅值: Y′=ω•Y ⑷ 由⑵、⑷式可见,振动速度和声速是两码事,二者不能混淆。振动形成的压强(声压)为: p=-E•ΔV/V=-E•Эy/Эx ⑸ 式中:E为介质的弹性模量,即介质中的应力与应变之比 ,它是材料的固有参数;ΔV/V为介质因受压力的变化而产生的体积变化率,数值上ΔV/V=Эy/Эx。 将⑴式代入⑸式得: p=E•K•Y•cos(ωt-Kx) =Pm•cos(ωt-Kx) ⑹ 式中:Pm=E•K•Y为最大声压。 我们知道,声强为单位面积上的声功率,而功率等于力与速度乘积,即声强等于单位面积上的压力(声压)乘以质点的振动速度,即声强: i=p•y′ =ω•E•K•Y²•cos²(ωt-Kx) ⑺ 平均声强为: I=(1/2)•ω•E•K•Y² =(1/2)•ω•Pm²/(E•K) ⑻ 将声速C=(E/ρ)^(1/2)代入⑻式,得: I=(1/2)•Pm²/(ρ•C) = P²/(ρ•C) ⑼ 式中:P为声压的有效值,即方均根值;ρ为介质的密度;ρ•C为介质的声学特性阻抗,20℃下空气的ρ•C=408 kg/(m²•s)。 综合以上各式,可得无穷大平面声波声强与振动的关系为: I=(1/2)•ω•E•K•Y² =(1/2)•2πf•C•ρ•(2π/λ)•Y² =2ρCπ²f²Y² =816π²f²Y² ⑽ 由⑽式可见,无穷大平面声波的声强与振动速度(f•Y)的平方成正比,由于声强是指单位面积上的声功率,代表了声波传递的能量,这就得出了我们前面所说的,振动速度是反映伴振动的能量。需要特别强调一下,⑽式是基于无穷大平面振动推导得到的振动与噪声的关系,适用于平面型辐射器,例如:当电机的尺寸远大于声波波长时,就可以把电机看作是一个平面型辐射器。对于其它类型的声波辐射器(如中小型电机)不适用,需要进行一定的修正(后续文章会详述),但⑽式是基础,是一个非常重要的公式,希望宝宝们牢记,后面还会经常用到。 这样枯燥的推导可能宝宝们很难直观感受多大的振动能够引起多大的噪声,为此我们举个例子来直观感受一下: 设一个振幅为Y=10^(-10)米、f=1000Hz的振动,则可以引起的声强为: I=816•π²•1000²•10^(-20) =8.05*10^(-11) 瓦/米² 其声强级为: Li=10•lg[8.05*10^(-11)/10^(-12)]=19.05dB。 也就是说当空气的振幅为1/10纳米(相当于分子直径级别的振幅)时,就会产生19.05dB的噪声,人耳可以清晰地听到。对于电机机壳的振动,通常振幅在微米级,假设是1微米吧,如果频率仍然是1000Hz,那么产生的声强为8.05*10^(-3)瓦/米²,对应的声强级可达99dB(A),99分贝是个什么概念啊,大概是在歌舞厅距离音响1米处的噪声,达到了非常吵闹的环境级别,我国环境标准规定在这样的环境中,每天不得超过一刻到半个小时,否则经过二三十年的长期暴露,会严重损伤听觉!由此可见只要频率较高(中频),微小的振动都会引起强烈的噪声。 2 振动和噪声的关系 上面

02

科学瞎想系列之一一三 NVH那些事(16)

【部分来自网络如有侵权敬请邮箱联系。未经许可的媒体平台谢绝图片转载,如需转载或合作请邮件联系。联系邮箱laolicsiem@126.com,】 前面两期讲了声波的传播以及振动与噪声的关系,本期讲电机噪声的辐射,也就是说对于电机的周围环境来讲,电机就是一个噪声源,从这个噪声源是向周围环境是如何辐射噪声的?不同类型噪声的辐射途径和辐射特性是什么? 1 电机噪声的分类及辐射途径 电机噪声按性质分可分为两大类:一是由机壳表面振动而产生的噪声,我们称之为结构噪声;另一类是空气湍流产生的噪声,我们称之为空气动力学噪声。 按噪声源分可分为三类:一是电磁激振力产生的噪声,我们称之为电磁噪声,即由气隙磁场谐波产生的径向力波和切向力波,经电机的机械结构传递到电机的外壳,进而对周围空气辐射噪声;二是机械激振力产生的噪声,我们称之为机械噪声,包括轴承、转子动平衡、对中等方面的因素引起的激振力产生的噪声,同样经电机机械结构传递到电机的外壳,再由外壳对外辐射,由于上述两种噪声都是由电机结构振动引起,并通过电机结构传递到外壳,因此它们都属于结构噪声;三是空气噪声,是电机内部的冷却空气在风扇、风道等通风系统中流动产生湍流,从而产生噪声。 如果电机是全封闭的,机壳外面没有风扇,那么,空气噪声只限于机壳内部,对外的辐射较小,可以忽略,但如果是开启式的电机或电机有外风机时,则空气噪声就不能再忽略,特别是有外风机的电机,风机产生的空气噪声会占主要成分,甚至会“淹没”电机本体的其它噪声。 2 结构噪声的辐射 如前所述,结构噪声首先是通过电机结构将振动从激振源传递到电机外壳,再由外壳辐射到周围空气中。前面的瞎想已经讲过了根据激振力和电机的固有结构参数如何计算出机壳的振动,上一期瞎想也讲了由外壳振动如何演变到分界面上的噪声,但这种推演是基于平面声波辐射的情况,当电机的尺寸远大于声波波长时,就可以把声源看作是一个平面辐射声源,就可以用前面的方法计算声波的辐射,即前述的方法仅适用于大中型电机辐射中高频声波的情况。 实际上,电机对外辐射的结构噪声不仅与机壳的振动强度有关,还与声源的尺寸、声波的波长(频率)、辐射表面的波节线分布(振动的空间阶次)等因素有关。如果声波的波长大于噪声源的尺寸时,那么随着声源尺寸的增大,辐射的声强也会随之增大,因此对于小尺寸电机,辐射高频声波的条件比辐射低频声波的条件为佳。如果电机的尺寸足够大,那么辐射的声强与频率关系不大,也就是说,大电机辐射的频带比较宽,对高频和低频均有良好的辐射效果。除此之外,机壳表面的辐射还与振动的阶次有关,当表面的振动幅值和相位都相同时,这种振动表面就称为0阶辐射器。如果表面的振动相位和幅值不相同,就会出现波节,这种情况称为高阶辐射器。振幅相同时,高阶辐射的能量要比0阶辐射能量小,这是由于具有不同振动相位的两个相邻部分的表面上产生的声压,具有一定程度的相互抵消,从而减弱了离机壳表面某一距离点处的声压,辐射的波长与电机尺寸之比越大,这种抵消作用越明显,因此对封闭式电机,其它条件相同的情况下,高阶振动产生的声强比0阶和低阶振动产生的声强要小。振动的球体是一个理想的0阶辐射器,而对于电机,则既是一个0阶辐射器又是一个高阶辐射器。 以上都是定性讲了电机结构噪声的某些辐射特性,仅有这些显然不能对电机噪声进行定量计算,接下来我们就讲一讲电机结构噪声的定量计算。 2.1 平面辐射器的辐射声强 当电机的尺寸远大于辐射声波的波长时,如:πD/λ>5(D=2R为机壳外径,R为机壳半径)时,可以把电机看作平面辐射器,如前所述,平面辐射器的表面辐射声强为: Ip=(1/2)•ρCω²Y² =2ρCπ²f²Y² ⑴ 式中:ρ为介质的密度;C为声速;f为振动频率;ω为振动角频率;Y为振幅。对于空气ρC=408kg/(m²•s)。对于大型电机,当已知电机外表面的振动参数后,就可以按照⑴式进行声强的计算了。再次强调,平面辐射器只适用于大中型电机对中高频声波的辐射,当电机的尺寸与声波的波长相近或小于波长时就不再适用⑴式计算了,需要进行修正,但⑴式作为平面辐射声强的计算公式,是计算其它辐射器的基础,其它辐射器的辐射声强都是在⑴式基础上打一个折扣来修正的。 2.2 球形辐射器的辐射声强 当电机的长径比近似为1时,可把电机看作是球形辐射器,球形辐射器的辐射声强就是在⑴式的基础上打一个折扣系数Ib*,即: Ib=Ip•Ib* =(1/2)•ρCω²Y²•Ib* =2ρCπ²f²Y²•Ib* ⑵ 电机机壳辐射的声功率为: W=Ib•(2πRL) =2ρCπ²f²Y²•(2πRL)•Ib* ⑶ 式中:R为定子外壳半径;L为机壳长度。其中所打的折扣系数称为球形辐射器的相对辐射声

01

基于ANSYS的水冷电机的热仿真

当前随着车辆交通工具地不断普及,电力驱动技术被广泛应用到车辆传动领域;而作为电驱动技术的核心部件,为了满足车辆传动的严格要求,除了应具有效率高、调速宽、结构紧凑等特点外,还应具足够竞争力的输出功率,以满足车辆的巨大动力需求。所以,车载驱动电机往往需要很高的电磁负荷设计,在运行过程中由于电磁产热、摩擦等产生大量的热,使电机中内部温度急剧升高,各零部件存在过温被烧毁或失效的风险,而驱动电机的运行环境温度较高、通风散热效果差、冷却介质温度高有大大增加了过温风险。因此,对电机进行精准的热特性分析和计算,设计合理有效的电机散热系统是十分必要的,其对于高功率密度电机性能的提升起着至关重要的作用。一般使用等效热阻来计算电机温升,但计算结果过于简单,无法输出精确的温度三维分布,满足实际电机设计需要,故本文以某水冷电机为计算对象,使用Ansys软件建立完善的电机热性能分析流程,为高功率电机热设计提供高精度的温升信息参考。

03
领券