人脸识别是大家最为熟悉的应用深度学习的例子,结合人脸识别技术的APP在市面上比比皆是,本文将简单介绍在人脸识别应用中的反欺诈技术——人脸活体检测。 人脸活体检测模块处于人脸检测阶段或之后,是目前人脸识别系统部署时不可或缺的一部分。 接下来,小编将从人脸欺诈攻击和相关反欺诈技术两个方面来揭开活体检测的神秘面纱。 大数据时代的盛行,使得人脸相关的数据集均来源于网络,同时真实人脸和打印人脸或其他欺诈性人脸,并没有提前做区分,那么,逐渐用于支付、监控和安全等领域的人脸识别技术,着实需要活体检测的帮助。 通常所说的活体检测是当系统从合法用户那里取得生物特征信息时,判断该生物特征信息是否来源于具有生物活体的合法用户身上。 Mutli-cues主要包含三个方面的活体特征:shearlet图像质量特征(SBIQF),脸部运动光流特征以及场景运动光流特征,然后使用神经网络做二分类问题,模型如下图所示: 最后,小编不得不吐槽一句百度搜索的学术气息
[人脸追踪示例] ArcFace 离线SDK,包含人脸检测、性别检测、年龄检测、人脸识别、图像质量检测、RGB活体检测、IR活体检测等能力,初次使用时需联网激活,激活后即可在本地无网络环境下工作,可根据具体的业务需求结合人脸识别 人脸检测 对传入的图像数据进行人脸检测,返回人脸的边框以及朝向信息,可用于后续的人脸识别、特征提取、活体检测等操作; 支持IMAGE模式和VIDEO模式人脸检测。 支持单人脸、多人脸检测,最多支持检测人脸数为50。 2.人脸追踪 对来自于视频流中的图像数据,进行人脸检测,并对检测到的人脸进行持续跟踪。 [3D角度] 5.活体检测 离线活体检测,静默式识别,在人脸识别过程中判断操作用户是否为真人,有效防御照片、视频、纸张等不同类型的作弊攻击,提高业务安全性,让人脸识别更安全、更快捷,体验更佳。 支持单目RGB活体检测、双目(IR/RGB)活体检测,可满足各类人脸识别终端产品活体检测应用。
基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务
一般通过rPPG 我们可以得到类似 BVP 的信号,通过此信号可以预测心率,呼吸率等各种vital sign,在 healthcare 领域应用广泛。 为什么 rPPG 能用在人脸活体检测? rPPG用于活体检测的原理 ---- 1. Generalized face anti-spoofing [1], ICPR2016 正如之前 活体检测综述 谈到,这是第一篇把 rPPG 用于活体检测的文章。 Time Analysis rPPG [4], CVPRW 2018 该文致力于研究两个问题:1) 时间长短对rPPG活体检测性能的影响 2)在不同模态下,RGB or NIR 下的rPPG活体检测性能 ---- 7. rPPG+Depth [7], CVPR2018 这也在之前的 活体检测综述 里说过,在这里,主要对比下 rPPG 的部分。
--> 判断捕捉到的人脸是真实人脸,还是伪造的人脸攻击(如:彩色纸张打印人脸图,电子设备屏幕中的人脸数字图像 以及 面具 等) 2. 为什么需要活体检测? --> 在金融支付,门禁等应用场景,活体检测一般是嵌套在人脸检测与人脸识别or验证中的模块,用来验证是否用户真实本人 3. Li[14] 已经提出了从人脸视频里测量心率的方法) 算法流程: 1. ,即人脸检测出来的 bbox 里有 背景,真人人脸,假人脸 三类的置信度,这样可以在早期就过滤掉一部分非活体。 表征;而也可探索活体检测与人脸检测及人脸识别之间更紧密的关系。 对于工业界,可直接在人脸检测时候预判是否活体;更可借助近红外,结构光/ToF等硬件做到更精准。
什么活体检测 判断捕捉到的人脸是真实人脸,还是伪造的人脸攻击(如:彩色纸张打印人脸图,电子设备屏幕中的人脸数字图像 以及 面具 等) 2. 为什么需要活体检测? 在金融支付,门禁等应用场景,活体检测一般是嵌套在人脸检测与人脸识别or验证中的模块,用来验证是否用户真实本人 3. ,即人脸检测出来的 bbox 里有 背景,真人人脸,假人脸 三类的置信度,这样可以在早期就过滤掉一部分非活体。 近红外NIR 由于NIR的光谱波段与可见光VIS不同,故真实人脸及非活体载体对于近红外波段的吸收和反射强度也不同,即也可通过近红外相机出来的图像来活体检测。 表征;而也可探索活体检测与人脸检测及人脸识别之间更紧密的关系。 对于工业界,可直接在人脸检测时候预判是否活体;更可借助近红外,结构光/ToF等硬件做到更精准。
一:简介 最近项目在做了身份证银行卡识别之后,开始实现人脸识别和活体识别,其中人脸识别包括人脸入库、人脸查找、人脸1:N对比、人脸N:N对比,另外活体识别运用在安全登录功能。 大家都熟知的支付宝使用face++ 的服务来实现人脸识别,在实际项目中使用了讯飞的人脸识别SDK进行二次封装来实现活体识别。主要实现了张嘴和摇头两个活体动作的识别。 在实际运用中,有很多app为了高度保证用户使用的安全问题,除了常规的账号密码登录之外,相继实现了指纹登录,手势登录,第三方登陆(QQ、微信、支付宝)、刷脸登录,接下里我就和大家分享一下如何实现人脸识别的活体检测 二:实现思路分析 点击识别按钮,调用相机 CameraRules类,检测相机权限 初始化页面,创建摄像页面,创建张嘴数据和摇头数据 开启识别,脸部框识别 脸部部位识别,脸部识别判断是否检测到人脸 检测到人脸之后 脸部部位识别,脸部识别判断是否检测到人脸 for(id key in keys){ id attr=[landmarkDic objectForKey:key]; if
前边已经详细介绍过人脸检测,其实检测类都可以归属于同一类,毕竟换汤不换药! 无论是人脸检测还是笑脸检测,又或者是opencv3以后版本加入的猫脸检测都是一个原理,用的是detectMultiScale函数,其具体使用参考公众号历史文章中的人脸检测(一)——基于单文档的应用台程序即可 ~ 笑脸检测用的还是那个函数(还是熟悉的味道!) 这里主要分两步来说: 1.加载人脸检测器进行人脸检测 2 加载笑脸检测器进行笑脸检测 其具体程序如下,可以实现对图片的检测,也可以调用摄像头对采集到的实时图像进行检测,需要完整项目的后台回复关键词 “笑脸检测”即可~ 关键部分程序如下: ?
无论是按照官方的JAVA例子生成的签名串,还是通过API Explorer生成的签名串,访问接口都提示AuthFailure.InvalidAuthorizat...
人机交互的活体检测方法需要通过对人脸做出实时响应来判断是否为活体,通常采用的方法有脸部姿态和读取指定数字等。 以现在主流的交互式活体检测为例,系统会引导用户往指定方向去看,然后去估计用户的头部姿势,通过比较用户的动作姿势和指示方向是否一致来判断活体,从而抵抗照片和视频重放的攻击。 但是也因此带来了一些问题,人机交互方法的主要缺点是检测的隐蔽性差,攻击者往往可以通过交互方法就可以知道系统所采用的活体检测手段,然后设计相应的方法去欺骗系统。 算法整体流程如下: 一:摄像头的视频获取 在获取视频的时候首先要设置一个区域,人脸落在这个区域里面才会检测,落在这个区域外面,就提示请靠近摄像头中心。 当眨眼次数大于2时,即判断该视频通过眨眼检测。 五:人脸姿态检测 人脸姿态估计主要是获得脸部朝向的角度信息。一般可以用旋转矩阵、旋转向量、四元数或欧拉角表示(这四个量也可以互相转换)。
人脸检测历险记 可能跟我一样,人脸检测是很多人学习图像处理的第一个自驱动型的任务,OpenCV刚上手没几天可能就想先跑一跑人脸检测,然后一个坑接着一个坑的往里跳。 上面用的是深度学习模型的人脸检测,但是在此之前还是稍微回顾下OpenCV自带的人脸检测器。 OpenCV自带的人脸检测 OpenCV自带了基于级联分类器的人脸检测模型,只能检测正脸,在前深度学习时代,效果已经是很好的了。 人脸卡通化 仅仅是人脸检测,显得略微有些没意思,所以在人脸检测的基础上,加点其他的更有意思的东西,比如上次刚玩过的卡通化。 如果想要立刻就体验一下效果的话,想必你已经看出来了,这个人脸检测 & 卡通化已经被我做成了一个体验网页了。手机和电脑均可访问。
这里主要记录 Dlib 中关于人脸检测和人脸关键点等技术的 python 应用. pip 安装: sudo apt-get install cmake sudo pip install dlib 或 Github 人脸检测 Face Detector 人脸检测,是检测出图片中包含的正面人脸. 1.1. 基于 CNN 的人脸检测 采用预训练的 CNN 模型进行图片中的人脸检测. 基于 CNN 模型比基于 HOG 特征模型的人脸检测准确度更高. 人脸关键点检测 Face Landmark Detection 人脸关键点检测,首先需要检测出图片中的人脸,并估计人脸的关键点姿态(pose). 人脸关键点检测 CNN 模型训练 这里主要是介绍对于论文 One Millisecond Face Alignment with an Ensemble of Regression Trees(CVPR
不多说了,直接代码吧: 生成AFLW_ann.txt的代码,其中包含图像名称 和 图像中人脸的位置(x,y,w,h); ** AFLW中含有aflw.aqlite文件。 f: f.writelines("%s\n" % line for line in list_annotation) AFLW图片都整理到flickr文件下(含0,1,2三个文件),生成人脸的程序 (并且对人脸进行了左右镜像): import os from PIL import Image from PIL import ImageFile # ImageFile.LOAD_TRUNCATED_IMAGES
简单粗暴,不多说,直接代码吧: import os import random from PIL import Image from PIL import Im...
在上一篇的基础上修改即可:人脸检测——滑动窗口篇(训练和实现) !!! = (img-m)/std''' return img def min_face(img, F, window_size, stride): # img:输入图像,F:最小人脸大小 F = 24 # 构建金字塔的比例 ff = 0.8 # 概率多大时判定为人脸? _24-161800') # saver_cal_48.restore(sess, 'model/model_cal_48-10000') # 需要检测的最小人脸 detection", image) cv2.waitKey(10000) cv2.destroyAllWindows() sess.close() 检测结果
本文链接:https://blog.csdn.net/chaipp0607/article/details/100578202 简介 SSH是一个用于人脸检测的one-stage检测器,提出于2017 年8月,在当时取得了state-of-art的效果,论文是《SSH: Single Stage Headless Face Detector》,SSH本身的方法上没有太多新意,更多的是在把通用目标检测的方法往人脸检测上应用 在每一路分支上最后都有一个Detection Module(它是多种卷积的组合,后面会详细说明),最后在Detection Module输出的特征图上,参考RPN的方法滑动输出两路分支,分别负责是不是人脸的置信度 这种跨层的信息融合在通用目标检测网络中很常见,比如YOLOv2里面那个奇怪的reorg操作,在SSH之后的文章中,也有很多使用了这种思想,比如YOLOv3和FPN。 Anchor设置 由于SSH用于人脸检测,它的Anchor选取和RPN有所区别,它将人脸默认为正方形,所以Anchor只有一种比例,1:1。
腾讯云神图·人脸识别基于腾讯优图世界领先的面部分析技术,提供包括人脸检测与分析、五官定位、人脸搜索、人脸比对、人脸验证、人脸查重、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。
扫码关注云+社区
领取腾讯云代金券