首页
学习
活动
专区
圈层
工具
发布

数据湖(一):数据湖概念

数据湖概念一、什么是数据湖数据湖是一个集中式的存储库,允许你以任意规模存储多个来源、所有结构化和非结构化数据,可以按照原样存储数据,无需对数据进行结构化处理,并运行不同类型的分析对数据进行加工,例如:大数据处理...数据湖技术可以很好的实现存储层面上的“批流一体”,这就是为什么大数据中需要数据湖的原因。...三、数据湖与数据仓库的区别数据仓库与数据湖主要的区别在于如下两点:存储数据类型数据仓库是存储数据,进行建模,存储的是结构化数据;数据湖以其本源格式保存大量原始数据,包括结构化的、半结构化的和非结构化的数据...而对于数据湖,您只需加载原始数据,然后,当您准备使用数据时,就给它一个定义,这叫做读时模式(Schema-On-Read)。这是两种截然不同的数据处理方法。...因为数据湖是在数据使用时再定义模型结构,因此提高了数据模型定义的灵活性,可满足更多不同上层业务的高效率分析诉求。图片图片

1.8K94
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于Apache Hudi 的CDC数据入湖

    CDC数据入湖方法 基于CDC数据的入湖,这个架构非常简单。...这是阿里云数据库OLAP团队的CDC入湖链路,因为我们我们做Spark的团队,所以我们采用的Spark Streaming链路入湖。...整个入湖链路也分为两个部分:首先有一个全量同步作业,会通过Spark做一次全量数据拉取,这里如果有从库可以直连从库做一次全量同步,避免对主库的影响,然后写到Hudi。...上游是入湖的变化事件流,对上可以支持各种各样的数据引擎,比如presto、Spark以及云上产品;另外可以利用Hudi的增量拉取能力借助Spark、Hive、Flink构建派生表。...Lake Cache构建缓存,文件格式是使用的开放Parquet、ORC、HFile存储格式,整个数据湖可以构建在各种云上。

    1.3K10

    Flink CDC + Hudi 海量数据入湖在顺丰的实践

    image.png 上图为 Flink + Canal 的实时数据入湖架构。...但是此架构存在以下三个问题: 全量与增量数据存在重复:因为采集过程中不会进行锁表,如果在全量采集过程中有数据变更,并且采集到了这些数据,那么这些数据会与 Binlog 中的数据存在重复; 需要下游进行...Upsert 或 Merge 写入才能剔除重复的数据,确保数据的最终一致性; 需要两套计算引擎,再加上消息队列 Kafka 才能将数据写入到数据湖 Hudi 中,过程涉及组件多、链路长,且消耗资源大...上述整个流程中存在两个问题:首先,数据多取,存在数据重复,上图中红色标识即存在重复的数据;其次,全量和增量在两个不同的线程中,也有可能是在两个不同的 JVM 中,因此先发往下游的数据可能是全量数据,也有可能是增量数据...将数据下发,下游会接上一个 KeyBy 算子,再接上数据冲突处理算子,数据冲突的核心是保证发往下游的数据不重复,并且按历史顺序产生。

    1.3K20

    Dinky 构建 Flink CDC 整库入仓入湖

    )、徐榜江 (雪尽) 老师们在 Flink Forward Asia 2021 上分享了精彩的《Flink CDC 如何简化实时数据入湖入仓》,带了新的数据入仓入湖架构。...如何简化实时数据入湖入仓》总结为以下四点: 1.全增量切换问题 该CDC入湖架构利用了 Hudi 自身的更新能力,可以通过人工介入指定一个准确的增量启动位点实现全增量的切换,但会有丢失数据的风险。...3.Schema 变更导致入湖链路难以维护 表结构的变更是经常出现的事情,但它会使已存在的 FlinkCDC 任务丢失数据,甚至导致入湖链路挂掉。...4.整库入湖 整库入湖是一个炙手可热的话题了,目前通过 FlinkCDC 进行会存在诸多问题,如需要定义大量的 DDL 和编写大量的 INSERT INTO,更为严重的是会占用大量的数据库连接,对 Mysql...此外 Dinky 还支持了整库同步各种数据源的 sink,使用户可以完成入湖入仓的各种需求,欢迎验证。

    4.7K20

    腾讯云数据湖专题直播蓄势待发

    您想与大咖面对面畅聊数据湖吗? 您想高效使用数据湖吗? 来云加社区腾讯云大咖为您解答。 腾讯云数据湖专题直播马上就要开播啦! 腾讯云数据湖专题直播马上就要开播啦!...腾讯云大咖讲师与您相约云加社区直播间,赶快拿起手机报名吧!更有诸多精美礼品公仔、抱枕、毛绒按摩器等您来领取!...雁栖学堂-湖存储专题直播是腾讯云主办的国内首个湖存储百科知识直播节目,是一个围绕湖存储技术领域,基于存储加速服务,覆盖了前沿趋势,时事热点,用户案例,大咖分享,开发者成长路径等内容的直播交流平台。...雁栖学堂是数据湖系列的专项直播将于8月24日19:00正式开播,本期是湖存储专题的第一期,属于数据湖的入门篇。数据湖专题直播一共有九期,我们相约云加社区,不见不散 !...雁栖学堂是数据湖系列的专项直播具体排期如下: 报名就有机会领取精美礼品一份(公仔,抱枕,毛绒按摩器),直播中还有互动抽奖环节哦,期待您的加入! — END —

    38030

    数据湖

    架构比略差 下面我们看下网上对于主流数据湖技术的对比 ?...从上图中我们可以看到hudi和iceberg的功能较齐全,下面我们将从如下几方面来 1.元数据打通 2.flink读写数据湖 3.增量更新 4.对事务的支持 5.对于写入hdfs小文件合并的支持 6.湖中的数据和仓中的数据的联通测试...7.高效的回缩能力 8.支持Schema变更 9.支持批流读写 9.支持批流读写 说完了技术体现,下面我们在简单说一下数据湖和数仓的理论定义 数据湖 其实数据湖就是一个集中存储数据库,用于存储所有结构化和非结构化数据...数据湖可用其原生格式存储任何类型的数据,这是没有大小限制。数据湖的开发主要是为了处理大数据量,擅长处理非结构化数据。 我们通常会将所有数据移动到数据湖中不进行转换。...数据湖中的每个数据元素都会分配一个唯一的标识符,并对其进行标记,以后可通过查询找到该元素。这样做技术能够方便我们更好的储存数据。 数据仓库 数据仓库是位于多个数据库上的大容量存储库。

    78130

    腾讯云数据湖专题直播蓄势待发

    您想与大咖面对面畅聊数据湖吗? 您想高效使用数据湖吗? 来云加社区腾讯云大咖为您解答。 腾讯云数据湖专题直播马上就要开播啦! 腾讯云数据湖专题直播马上就要开播啦!...腾讯云大咖讲师与您相约云加社区直播间,赶快拿起手机报名吧!更有诸多精美礼品公仔、抱枕、毛绒按摩器等您来领取!...雁栖学堂-湖存储专题直播是腾讯云主办的国内首个湖存储百科知识直播节目,是一个围绕湖存储技术领域,基于存储加速服务,覆盖了前沿趋势,时事热点,用户案例,大咖分享,开发者成长路径等内容的直播交流平台。...雁栖学堂是数据湖系列的专项直播将于8月24日19:00正式开播,本期是湖存储专题的第一期,属于数据湖的入门篇。数据湖专题直播一共有九期,我们相约云加社区,不见不散 !...雁栖学堂是数据湖系列的专项直播具体排期如下: 取精美礼品一份(公仔,抱枕,毛绒按摩器),直播中还有互动抽奖环节哦,期待您的加入!

    40030

    基于Apache Hudi + Flink的亿级数据入湖实践

    随着实时平台的稳定及推广开放,各种使用人员有了更广发的需求: •对实时开发来说,需要将实时sql数据落地做一些etl调试,数据取样等过程检查;•数据分析、业务等希望能结合数仓已有数据体系,对实时数据进行分析和洞察...,比如用户行为实时埋点数据结合数仓已有一些模型进行分析,而不是仅仅看一些高度聚合化的报表;•业务希望将实时数据作为业务过程的一环进行业务驱动,实现业务闭环;•针对部分需求,需要将实时数据落地后,结合其他数仓数据...总的来说,实时平台输出高度聚合后的数据给用户,已经满足不了需求,用户渴求更细致,更原始,更自主,更多可能的数据 而这需要平台能将实时数据落地至离线数仓体系中,因此,基于这些需求演进,实时平台开始了实时数据落地的探索实践...•ETL逻辑能够嵌入落数据任务中•开发入口统一 我们当时做了通用的落数据通道,通道由Spark任务Jar包和Shell脚本组成,数仓开发入口为统一调度平台,将落数据的需求转化为对应的Shell参数,启动脚本后完成数据的落地...当时Flink+Hudi社区还没有实现,我们参考Flink+ORC的落数据的过程,做了实时数据落地的实现,主要是做了落数据Schema的参数化定义,使数据开发同事能shell化实现数据落地。 4.

    99731

    【数据湖】塑造湖:数据湖框架

    大数据和数据湖的风险和挑战 大数据带来的挑战如下: 容量——庞大的数据量是否变得难以管理? 多样性——结构化表格?半结构化 JSON?完全非结构化的文本转储?...准确性——当数据量不同、来源和结构不同以及它们到达湖的速度不同时,我们如何保持准确性和准确性? 同时管理所有四个是挑战的开始。 很容易将数据湖视为任何事物的倾倒场。...框架 我们把湖分成不同的部分。关键是湖中包含各种不同的数据——一些已经过清理并可供业务用户使用,一些是无法辨认的原始数据,需要在使用之前进行仔细分析。...微信小号 【cea_csa_cto】50000人社区,讨论:企业架构,云计算,大数据,数据科学,物联网,人工智能,安全,全栈开发,DevOps,数字化....QQ群 【792862318】深度交流企业架构,业务架构,应用架构,数据架构,技术架构,集成架构,安全架构。以及大数据,云计算,物联网,人工智能等各种新兴技术。

    81820

    腾讯主导 Apache 开源项目: InLong(应龙)数据入湖原理分析

    WeData 数据集成完全基于 Apache InLong 构建,本文阐述的 InLong 数据入湖能力可以在 WeData 直接使用。...关于 Apache Iceberg Apache Iceberg 是一种数据湖管理库,其设计简单、易用,并具备强大的查询和分析能力。...它解决了数据湖的成本效益和使用复杂性的问题,同时还提供了数据管理与访问的解耦、数据的可见性和一致性保证、快照和时间旅行查询等特性。...在各种数据湖的场景中,Iceberg 都能够发挥重要的作用,提高数据湖的可用性和可靠性,同时也为用户带来了更好的数据管理和查询体验。...Sort on Flink 入 Iceberg 上图为 Sort on Flink 主要流程,入 Iceberg 任务由三个算子一个分区选择器组成,Source 算子从源端拉取数据, Key Selector

    88910

    基于Flink CDC打通数据实时入湖

    照片拍摄于2014年夏,北京王府井附近 大家好,我是一哥,今天分享一篇数据实时入湖的干货文章。...数据入湖分为append和upsert两种方式。...3,数据入湖任务运维 在实际使用过程中,默认配置下是不能够长期稳定的运行的,一个实时数据导入iceberg表的任务,需要通过至少下述四点进行维护,才能使Iceberg表的入湖和查询性能保持稳定。...并增加小文件监控、定时任务压缩小文件、清理过期数据等功能。 2,准实时数仓探索 本文对数据实时入湖从原理和实战做了比较多的阐述,在完成实时数据入湖SQL化的功能以后,入湖后的数据有哪些场景的使用呢?...下一个目标当然是入湖的数据分析实时化。比较多的讨论是关于实时数据湖的探索,结合所在企业数据特点探索适合落地的实时数据分析场景成为当务之急。

    1.8K20

    【数据湖仓】数据湖和仓库:范式简介

    是时候将数据分析迁移到云端了——您选择数据仓库还是数据湖解决方案?了解这两种方法的优缺点。 数据分析平台正在转向云环境,例如亚马逊网络服务、微软 Azure 和谷歌云。...云环境提供了多种好处,例如可扩展性、可用性和可靠性。此外,云提供商有大量的原生组件可供构建。还有多种第三方工具可供选择,其中一些是专门为云设计的,可通过云市场获得。...博客系列 数据湖和仓库第 1 部分:范式简介 数据湖和仓库第 2 部分:Databricks 和雪花 数据湖和仓库第 3 部分:Azure Synapse 观点 两种范式:数据湖与数据仓库 基于一些主要组件的选择...,云分析解决方案可以分为两类:数据湖和数据仓库。...原则上,您可以纯粹在数据湖或基于数据仓库的解决方案上构建云数据分析平台。 我见过大量基于数据湖工具的功能齐全的平台。在这些情况下,可以使用特定于用例的数据库数据集市来提供信息,而根本不需要数据仓库。

    76310

    腾讯云发布国内首个云原生智能数据湖产品图谱,构建一体化数据湖服务

    5月13日,在北京举办的“腾讯云原生智能数据湖”发布会上,腾讯云首次对外展示完整云端数据湖产品图谱,并推出两款“开箱即用”数据湖产品,数据湖计算服务DLC和数据湖构建DLF。...腾讯云此次展示的完整云原生数据湖产品矩阵包括数据湖存储、数据湖算力调度、数据湖大数据分析、数据湖AI能力、以及数据湖应用和云上基础服务六个层面,提供一体化的全方位服务。...数据湖构建则能帮助用户快速高效的构建企业数据湖技术架构,包括统一元数据管理、多源数据入湖、任务编排、权限管理等数据湖构建工具。...同时,借助数据湖构建,用户可以极大提高数据入湖准备的效率,方便地管理散落各处的孤岛数据。...三大趋势催生国内首个云原生智能数据湖 腾讯云此次推出云原生智能数据湖的背后,是数智时代的数据分析新趋势,包括以云计算为中心、以数据驱动业务及可组合式数据架构。

    84050

    COS 数据湖最佳实践:基于 Serverless 架构的入湖方案

    数据湖是一种存储架构,本质上讲是存储,所以通常情况下会用最经典的对象存储,比如用腾讯云对象存储 COS 当数据湖的地基。...04 COS + Serverless 入湖技术架构 COS + Serverless  架构下的入湖方案其实是 batch 方案,通过云原生的函数触发器或 Cron/APIGW 拉起数据调用,通过函数捕获并记录批次数据信息...高效,每个入湖模块都是单独运行、单独部署、单独伸缩。提供更加高效的入湖模块逻辑管理。 稳定可靠,云函数模块在发生可用区故障时,能自动地选择其他可用区的基础设施来运行,免除单可用区运行的故障风险。...由事件触发的工作负载可以使用云函数来实现,利用不同云服务满足不同的业务场景和业务需求,使得数据湖架构更加健壮。...函数执行时按请求数和计算资源的运行时间收费,相比于自建集群部署入湖,价格优势明显。 云原生,Serverless 提供更加云原生的入湖解决方案,所有资源云上部署,云上使用,更加便捷高效。

    2K40

    腾讯云原生智能数据湖发布会将开,首次透露腾讯云数据湖产品全景矩阵

    数据湖正是在这样的背景下应运而生,而云是数据湖最佳的实践场所。国内各大云厂商也聚焦数据湖,将云计算技术与数据湖技术结合,进一步发挥云自有的弹性扩张、灵活部署优势,让企业快速搭建并运用数据湖技术架构。...其中腾讯云,已经构建了完善的数据湖技术与产品矩阵,围绕数据湖存储、数据湖分析、数据湖 AI,数据湖算力调度覆盖数据业务全场景,形成综合性云端数据湖解决方案,帮助企业高效构建云端数据湖架构。...5月13日下午,腾讯云将在北京举办“云原生智能数据湖”媒体发布会。 1565881658.jpg 会上,腾讯云将首次对外展示完整数据湖产品矩阵以及发布数据湖系列新品,助力企业数据资源的高效共享。...目前,腾讯云数据湖体系已服务众多内外部客户,算力弹性资源池达 500万核,存储数据超过100PB,日采集数据量超500TB,每日分析任务数达1500万,每日实时计算次数超过万亿,能支持上亿维度的数据训练...基于腾讯云原生数据湖技术架构,在数据采集、数据存储、数据分析的全数据链条上提供了高可靠高可用的弹性数据能力。

    1.9K30

    腾讯安全发布云原生安全数据湖

    9 月 20 日,腾讯安全发布全新一代云原生安全数据湖,专注海量日志数据分析,助力企业构建一体化云原生数据湖平台,迈向主动安全。...两年前,腾讯安全在服务客户过程中发现,客户普遍反应遇到日志存储成本攀升、查询效率低下的问题,因此腾讯安全大数据实验室基于多年的大数据分析处理能力,前后花费两年时间自主研发了一款面向云原生的安全数据湖产品...腾讯云原生安全数据湖是基于云原生的自研数据分析平台,利用日志数据无需修改、大量字段重复、有时间戳等特性进行了几大创新: 架构领先:MPP 架构,采用 Rust 语言开发,针对日志及安全场景进行专项优化...:面向云原生架构实现存算分离、读写分离、从而实现一键弹性扩容,故障秒级切换 依托上述技术创新,腾讯云原生安全数据湖实现了极致的压缩比和数据处理效率,能将企业的安全运营存储成本降低 90%;在底层架构上面向云原生设计...目前,该数据湖已经集成在腾讯安全 SOC+ 产品下,为企业安全运营管理提供基座。未来,腾讯安全还会对外提供独立产品,助力企业构建云原生数据湖平台。

    65520

    云原生数据湖101

    导语 | 云原生数据湖致力于扩大公有云市场总量:一方面以低成本优势推动客户上云,另一方面云上客户得以低成本撬动更多结构化和非结构化数据的价值,是一场云厂商的自我革命,本文将为大家洞悉云原生数据湖的神秘面纱...腾讯云数据湖产品 要解决数据湖架构三大原则中的诸多问题,从 0 打造云原生数据湖,需要很多专业的公有云背景和数据湖技术能力,腾讯云为此推出两款数据湖产品,便于客户数据平台架构升级。...preview= 腾讯云数据湖构建(Data Lake Formation,DLF)【2】提供了数据湖的快速构建,与湖上元数据管理服务,帮助用户快速高效的构建企业数据湖技术架构,包括统一元数据管理、多源数据入湖...借助数据湖构建,用户可以极大的提高数据入湖准备的效率,方便的管理散落各处的孤岛数据。 【2】DLF: https://cloud.tencent.com/product/dlf?!...数据入湖构建 快速构建数据湖,以及在各种数据之间同步和处理数据,为高性能分析数据计算作数据准备。 2. 数据分析 用户可直接查询和计算 COS 桶中的数据,而无需将数据聚合或加载到数据湖计算中。

    59110

    基于Apache Hudi 的CDC数据入湖

    02 CDC数据入湖方法 基于CDC数据的入湖,这个架构非常简单。...这是阿里云数据库OLAP团队的CDC入湖链路,因为我们我们做Spark的团队,所以我们采用的Spark Streaming链路入湖。...整个入湖链路也分为两个部分:首先有一个全量同步作业,会通过Spark做一次全量数据拉取,这里如果有从库可以直连从库做一次全量同步,避免对主库的影响,然后写到Hudi。...上游是入湖的变化事件流,对上可以支持各种各样的数据引擎,比如presto、Spark以及云上产品;另外可以利用Hudi的增量拉取能力借助Spark、Hive、Flink构建派生表。...Lake Cache构建缓存,文件格式是使用的开放Parquet、ORC、HFile存储格式,整个数据湖可以构建在各种云上。

    1.9K30
    领券