腾讯云数据湖计算 DLC(Data Lake Compute,DLC)提供了敏捷高效的数据湖分析与计算服务。 数据湖计算 DLC 通过类 SaaS 化的服务设计,为客户提供云原生企业级敏捷智能数据湖解决方案,具备以下特点: • 依托腾讯云大数据内核技术增强能力,为企业提供稳定、安全、高性能的计算资源。 Apache Hudi 是新一代流式数据湖平台,其最主要的特点是支持记录(Record)级别的插入更新(Upsert)和删除,同时还支持增量查询。 应用场景 近实时数据入湖 Apache Hudi 支持插入、更新和删除数据的能力。相比其他传统的文件格式,Hudi 优化了数据写入过程中产生的小文件问题。 但如果发生数据迟到的现象,唯一的补救措施是通过对整个分区的重新计算来保证正确性,这增加了整个系统的在计算和存储方面的性能开销。
腾讯云数据湖产品 要解决数据湖架构三大原则中的诸多问题,从 0 打造云原生数据湖,需要很多专业的公有云背景和数据湖技术能力,腾讯云为此推出两款数据湖产品,便于客户数据平台架构升级。 腾讯云数据湖计算(Data Lake Compute,DLC)【1】提供了敏捷高效的数据湖分析与计算服务。 数据入湖构建 快速构建数据湖,以及在各种数据之间同步和处理数据,为高性能分析数据计算作数据准备。 2. 数据分析 用户可直接查询和计算 COS 桶中的数据,而无需将数据聚合或加载到数据湖计算中。 数据湖计算能够处理非结构化、半结构化和结构化的数据集,格式包括 CSV、JSON、Avro、Parquet、ORC 等。可以将数据湖计算集成到数据可视化应用中,生成数据报表,轻松实现数据可视化。 ? 联邦分析 数据湖计算支持对多源异构数据进行联合查询分析,包括对象存储、云数据库、大数据服务等。用户通过统一的数据视图,使用标准的 SQL 即可实现多源数据联合查询分析。
2核2G云服务器 每月9.33元起,个人开发者专属3年机 低至2.3折
准确性——当数据量不同、来源和结构不同以及它们到达湖的速度不同时,我们如何保持准确性和准确性? 同时管理所有四个是挑战的开始。 很容易将数据湖视为任何事物的倾倒场。 框架 我们把湖分成不同的部分。关键是湖中包含各种不同的数据——一些已经过清理并可供业务用户使用,一些是无法辨认的原始数据,需要在使用之前进行仔细分析。 我们有一个原始数据的登陆区域,一个过渡区域,在此区域中,数据被清理、验证、丰富和增强,并添加了额外的来源和计算,然后最终被放置在一个可供业务使用的精选区域中。 微信小号 【cea_csa_cto】50000人社区,讨论:企业架构,云计算,大数据,数据科学,物联网,人工智能,安全,全栈开发,DevOps,数字化. QQ群 【792862318】深度交流企业架构,业务架构,应用架构,数据架构,技术架构,集成架构,安全架构。以及大数据,云计算,物联网,人工智能等各种新兴技术。
针对以上痛点, 腾讯云发布云原生数据湖计算服务,协同腾讯云端数据湖体系,帮助企业高效构建云端数据湖架构、降低数据计算成本,提升数据分析敏捷性、激发数据应用价值,助力企业数字化决策。 [image.png] 腾讯云数据湖体系围绕数据湖存储、数据湖计算、数据湖 AI,覆盖数据业务全场景,形成综合性云端数据湖解决方案。 三、云原生数据湖计算 通常使用大数据分析组件对对象存储中的数据进行分析时, 会面临两个核心问题: 如何基于云服务兼容特性屏蔽底层架构,降低计算成本? 如何加速和优化存储侧的性能瓶颈? [image.png] 为了解决数据湖敏捷高效的分析和计算问题,腾讯云推出一款开箱即用的数据湖分析服务——腾讯云数据湖计算(Data Lake Compute,DLC)。 低成本,无限算力云原生数据湖 相对于传统固定规模集群,腾讯数据湖技术完全基于腾讯云弹性容器技术(EKS)构建,理论上“无限”的计算资源随时可供秒级调度,满足不同规模的计算任务,使用者再也不用关心底层资源的部署和运维
针对以上痛点, 腾讯云发布云原生数据湖计算服务,协同腾讯云端数据湖体系,帮助企业高效构建云端数据湖架构、降低数据计算成本,提升数据分析敏捷性、激发数据应用价值,助力企业数字化决策。 image.png 腾讯云数据湖体系围绕数据湖存储、数据湖计算、数据湖 AI,覆盖数据业务全场景,形成综合性云端数据湖解决方案。 三、云原生数据湖计算 通常使用大数据分析组件对对象存储中的数据进行分析时, 会面临两个核心问题: 如何基于云服务兼容特性屏蔽底层架构,降低计算成本? 如何加速和优化存储侧的性能瓶颈? image.png 为了解决数据湖敏捷高效的分析和计算问题,腾讯云推出一款开箱即用的数据湖分析服务——腾讯云数据湖计算(Data Lake Compute,DLC)(官网介绍:https://cloud.tencent.com image.png 腾讯云 DLC 服务联合腾讯多个团队深耕核心技术, 以提供一款高性能数据计算服务为目标,实现了如下几个关键技术特征: 数据湖高性能计算 腾讯云 DLC 引入高性能 serverless
针对以上痛点, 腾讯云发布云原生数据湖计算服务,协同腾讯云端数据湖体系,帮助企业高效构建云端数据湖架构、降低数据计算成本,提升数据分析敏捷性、激发数据应用价值,助力企业数字化决策。 腾讯云数据湖体系围绕数据湖存储、数据湖计算、数据湖 AI,覆盖数据业务全场景,形成综合性云端数据湖解决方案。 三、云原生数据湖计算 通常使用大数据分析组件对对象存储中的数据进行分析时, 会面临两个核心问题: 如何基于云服务兼容特性屏蔽底层架构,降低计算成本? 如何加速和优化存储侧的性能瓶颈? ? 为了解决数据湖敏捷高效的分析和计算问题,腾讯云推出一款开箱即用的数据湖分析服务——腾讯云数据湖计算(Data Lake Compute,DLC)(官网介绍:https://cloud.tencent.com 点击文末「阅读原文」,了解腾讯云数据湖计算DLC更多信息~ 腾讯云大数据 ? 长按二维码 关注我们
针对以上痛点, 腾讯云发布云原生数据湖计算服务,协同腾讯云端数据湖体系,帮助企业高效构建云端数据湖架构、降低数据计算成本,提升数据分析敏捷性、激发数据应用价值,助力企业数字化决策。 image (2).png 腾讯云数据湖体系围绕数据湖存储、数据湖计算、数据湖 AI,覆盖数据业务全场景,形成综合性云端数据湖解决方案。 三、云原生数据湖计算 通常使用大数据分析组件对对象存储中的数据进行分析时, 会面临两个核心问题: 如何基于云服务兼容特性屏蔽底层架构,降低计算成本? 如何加速和优化存储侧的性能瓶颈? image (3).png 为了解决数据湖敏捷高效的分析和计算问题,腾讯云推出一款开箱即用的数据湖分析服务——腾讯云数据湖计算(Data Lake Compute,DLC)。 低成本,无限算力云原生数据湖 相对于传统固定规模集群,腾讯数据湖技术完全基于腾讯云弹性容器技术(EKS)构建,理论上“无限”的计算资源随时可供秒级调度,满足不同规模的计算任务,使用者再也不用关心底层资源的部署和运维
数据湖概念一、什么是数据湖数据湖是一个集中式的存储库,允许你以任意规模存储多个来源、所有结构化和非结构化数据,可以按照原样存储数据,无需对数据进行结构化处理,并运行不同类型的分析对数据进行加工,例如:大数据处理 随着实时计算引擎的不断发展以及业务对于实时报表的产出需求不断膨胀,业界最近几年就一直聚焦并探索于实时数仓建设。 数据湖技术可以很好的实现存储层面上的“批流一体”,这就是为什么大数据中需要数据湖的原因。 三、数据湖与数据仓库的区别数据仓库与数据湖主要的区别在于如下两点:存储数据类型数据仓库是存储数据,进行建模,存储的是结构化数据;数据湖以其本源格式保存大量原始数据,包括结构化的、半结构化的和非结构化的数据 因为数据湖是在数据使用时再定义模型结构,因此提高了数据模型定义的灵活性,可满足更多不同上层业务的高效率分析诉求。图片图片
下表展示了数据仓库和数据湖在各个维度上的特性: ? 相比于数据仓库,数据湖会保留最原始的数据,并且是读取时确定 Schema,这样可以在业务发生变化时能灵活调整。 ,包括流处理和批处理:SPARK,FLINK 简单的说,数据湖技术是计算引擎和底层存储格式之间的一种数据组织格式,用来定义数据、元数据的组织方式。 且在数据仓库如 hive中,对于update的支持非常有限,计算昂贵。 四、Apache Iceberg Iceberg 作为新兴的数据湖框架之一,开创性的抽象出“表格式”table format)这一中间层,既独立于上层的计算引擎(如Spark和Flink)和查询引擎(如 ,即无需重新组织或变更数据文件; 隐式分区,使SQL不用针对分区方式特殊优化; 面向云存储的优化等; Iceberg的架构和实现并未绑定于某一特定引擎,它实现了通用的数据组织格式,利用此格式可以方便地与不同引擎
数据湖正是在这样的背景下应运而生,而云是数据湖最佳的实践场所。国内各大云厂商也聚焦数据湖,将云计算技术与数据湖技术结合,进一步发挥云自有的弹性扩张、灵活部署优势,让企业快速搭建并运用数据湖技术架构。 其中腾讯云,已经构建了完善的数据湖技术与产品矩阵,围绕数据湖存储、数据湖分析、数据湖 AI,数据湖算力调度覆盖数据业务全场景,形成综合性云端数据湖解决方案,帮助企业高效构建云端数据湖架构。 5月13日下午,腾讯云将在北京举办“云原生智能数据湖”媒体发布会。 1565881658.jpg 会上,腾讯云将首次对外展示完整数据湖产品矩阵以及发布数据湖系列新品,助力企业数据资源的高效共享。 目前,腾讯云数据湖体系已服务众多内外部客户,算力弹性资源池达 500万核,存储数据超过100PB,日采集数据量超500TB,每日分析任务数达1500万,每日实时计算次数超过万亿,能支持上亿维度的数据训练 基于腾讯云原生数据湖技术架构,在数据采集、数据存储、数据分析的全数据链条上提供了高可靠高可用的弹性数据能力。
中的数据 >全链路依赖消息队列的实时计算可能因为数据的时序性导致结果不正确 4.数据湖 >支持数据高效的回溯能力 >支持数据的更新 >支持数据的批流读写 >支持实现分钟级到秒级的数据接入,实效性和Kappa 架构比略差 下面我们看下网上对于主流数据湖技术的对比 ? 从上图中我们可以看到hudi和iceberg的功能较齐全,下面我们将从如下几方面来 1.元数据打通 2.flink读写数据湖 3.增量更新 4.对事务的支持 5.对于写入hdfs小文件合并的支持 6.湖中的数据和仓中的数据的联通测试 7.高效的回缩能力 8.支持Schema变更 9.支持批流读写 9.支持批流读写 说完了技术体现,下面我们在简单说一下数据湖和数仓的理论定义 数据湖 其实数据湖就是一个集中存储数据库,用于存储所有结构化和非结构化数据 数据湖可用其原生格式存储任何类型的数据,这是没有大小限制。数据湖的开发主要是为了处理大数据量,擅长处理非结构化数据。 我们通常会将所有数据移动到数据湖中不进行转换。
目前市面上流行的三大开源数据湖方案分别为:Delta、Iceberg 和 Hudi,但是 Iceberg是一个野心勃勃的项目,因为它具有高度抽象和非常优雅的设计,为成为一个通用的数据湖方案奠定了良好基础 Parquet不仅支持普通的数据模型,而且还支持嵌套的数据模型,对于嵌套数据模型的支持是Parquet的一大特色。 4.上述1~3从理论上定义了Parquet这个文件格式是如何处理复杂数据类型,如何将数据按照一定规则写成一个文件,又是如何记录元数据信息。 实际上,Parquet就是一系列jar包,这些jar包提供了相关的读取和写入API,上层计算引擎只需要调用对应的API就可以将数据写成Parquet格式的文件,这个jar包里面实现了如何将复杂类型的数据进行处理 相反,调用扫描API,这个jar包实现了如果通过元数据统计信息定位扫描的起始位置,如何按照文件格式正确高效地解压数据块将数据扫描出来。
又一项大能力-云原生数据湖获得信通院认证啦! 的数据湖解决方案 V5.0,在存储能力、计算能力、安全能力、数据管理能力、湖应用能力、兼容性能力、运维能力、高可用能力等方面,通过了工业和信息化部中国信息通信研究院大数据能力专项评测,荣获“云原生数据湖基础能力专项评测证书 ,提供云原生的数据处理能力;此外,腾讯云提供了云原生容器计算服务,帮助用户实现弹性计算能力。 数据湖加速器 GooseFS数据湖加速器 GooseFS 以腾讯云对象存储 COS 为海量存储底座,为数据湖生态中的计算应用提供统一的数据湖入口,加速海量数据分析、机器学习、人工智能等业务访问存储的性能 、AI 等多种开源组件,一站式完成云原生计算平台构建。
又一项大能力-云原生数据湖获得信通院认证啦! 的数据湖解决方案 V5.0,在存储能力、计算能力、安全能力、数据管理能力、湖应用能力、兼容性能力、运维能力、高可用能力等方面,通过了工业和信息化部中国信息通信研究院大数据能力专项评测,荣获“云原生数据湖基础能力专项评测证书 ,提供云原生的数据处理能力;此外,腾讯云提供了云原生容器计算服务,帮助用户实现弹性计算能力。 数据湖加速器 GooseFS 数据湖加速器 GooseFS 以腾讯云对象存储 COS 为海量存储底座,为数据湖生态中的计算应用提供统一的数据湖入口,加速海量数据分析、机器学习、人工智能等业务访问存储的性能 、AI 等多种开源组件,一站式完成云原生计算平台构建。
5月13日,在北京举办的“腾讯云原生智能数据湖”发布会上,腾讯云首次对外展示完整云端数据湖产品图谱,并推出两款“开箱即用”数据湖产品,数据湖计算服务DLC和数据湖构建DLF。 在数据应用服务中,腾讯云推出基于数据湖的数据应用服务,比如企业画像、联邦计算、商业智能分析等。 最后,云原生的基础服务为腾讯云数据湖体系提供了有力的保障。 两款“开箱即用”数据湖新品 消除数据孤岛 为了帮助客户快速构建和分析数据湖,腾讯云此次正式推出两款开箱即用的数据湖产品:数据湖计算服务(Data Lake Compute,简称DLC)和数据湖构建(Data 三大趋势催生国内首个云原生智能数据湖 腾讯云此次推出云原生智能数据湖的背后,是数智时代的数据分析新趋势,包括以云计算为中心、以数据驱动业务及可组合式数据架构。 雷小平认为:“云原生智能数据湖,能够很好的扩展计算和存储资源,同时能极大地降低运维管理难度,实现业务灵活部署。
您想与大咖面对面畅聊数据湖吗? 您想高效使用数据湖吗? 来云加社区腾讯云大咖为您解答。 腾讯云数据湖专题直播马上就要开播啦! 腾讯云数据湖专题直播马上就要开播啦! 腾讯云大咖讲师与您相约云加社区直播间,赶快拿起手机报名吧!更有诸多精美礼品公仔、抱枕、毛绒按摩器等您来领取! 雁栖学堂-湖存储专题直播是腾讯云主办的国内首个湖存储百科知识直播节目,是一个围绕湖存储技术领域,基于存储加速服务,覆盖了前沿趋势,时事热点,用户案例,大咖分享,开发者成长路径等内容的直播交流平台。 雁栖学堂是数据湖系列的专项直播将于8月24日19:00正式开播,本期是湖存储专题的第一期,属于数据湖的入门篇。数据湖专题直播一共有九期,我们相约云加社区,不见不散 ! 雁栖学堂是数据湖系列的专项直播具体排期如下: 取精美礼品一份(公仔,抱枕,毛绒按摩器),直播中还有互动抽奖环节哦,期待您的加入!
二、增量计算的架构图 ? 搞清楚下面三个问题,就搞清楚了什么是增量计算 增量计算的增量体现在哪? 首先数据是要增量的入湖。 增量计算为什么要有消息队列的能力 增量计算就是计算 5 分钟或者 10 分钟的数据,需要数据湖能从上次的地方继续开始消费。 第二种场景:延迟数据 比如现在要计算 1 分钟之内的数据,假设现在 1 分钟的数据计算完了,然后来了一条上个 1 分钟的数据,那么就要把上 1 分钟的数据再次计算一遍,再去修改。 所以,需要数据湖有 upsert 能力。 上图中,流计算和批计算的存储是统一的,但是计算引擎是不统一的,哪天 Flink 的功能更加完善了,就可以去掉 Spark,做到真正的计算和存储流批一体。 三、数据湖的核心原理(Iceberg) 官方对 Iceberg 的定义是一种 Open Table Format。 那什么是 table format? 我们看下面的架构: ?
您想与大咖面对面畅聊数据湖吗? 您想高效使用数据湖吗? 来云加社区腾讯云大咖为您解答。 腾讯云数据湖专题直播马上就要开播啦! 腾讯云数据湖专题直播马上就要开播啦! 腾讯云大咖讲师与您相约云加社区直播间,赶快拿起手机报名吧!更有诸多精美礼品公仔、抱枕、毛绒按摩器等您来领取! 雁栖学堂-湖存储专题直播是腾讯云主办的国内首个湖存储百科知识直播节目,是一个围绕湖存储技术领域,基于存储加速服务,覆盖了前沿趋势,时事热点,用户案例,大咖分享,开发者成长路径等内容的直播交流平台。 雁栖学堂是数据湖系列的专项直播将于8月24日19:00正式开播,本期是湖存储专题的第一期,属于数据湖的入门篇。数据湖专题直播一共有九期,我们相约云加社区,不见不散 ! 雁栖学堂是数据湖系列的专项直播具体排期如下: 报名就有机会领取精美礼品一份(公仔,抱枕,毛绒按摩器),直播中还有互动抽奖环节哦,期待您的加入! — END —
是时候将数据分析迁移到云端了——您选择数据仓库还是数据湖解决方案?了解这两种方法的优缺点。 数据分析平台正在转向云环境,例如亚马逊网络服务、微软 Azure 和谷歌云。 ,云分析解决方案可以分为两类:数据湖和数据仓库。 组织数据和表的关系是可以的,但是通常不强制使用,我们可以很容易地绕过它们。 数据湖解决方案的一个主要优势是计算和处理工具的去中心化。 微信小号 【cea_csa_cto】50000人社区,讨论:企业架构,云计算,大数据,数据科学,物联网,人工智能,安全,全栈开发,DevOps,数字化. QQ群 【792862318】深度交流企业架构,业务架构,应用架构,数据架构,技术架构,集成架构,安全架构。以及大数据,云计算,物联网,人工智能等各种新兴技术。
腾讯云数据湖计算(DLC)提供了敏捷高效的数据湖分析与计算服务。该服务采用无服务器架构(Serverless)设计,用户无需关注底层架构或维护计算资源,使用标准 SQL 即可完成对象存储服务(COS)及其他云端数据设施的联合分析计算。借助该服务,用户无需进行传统的数据分层建模,大幅缩减了海量数据分析的准备时间,有效提升了企业数据敏捷度。
扫码关注腾讯云开发者
领取腾讯云代金券