学习
实践
活动
工具
TVP
写文章

互联网运营中的10大数据分析方法

“器”是指物品或工具,在数据分析领域指的就是数据分析的产品或工具,“工欲善其事,必先利其器”;“术”是指操作技术,是技能的高低、效率的高下,如对分析工具使用的技术(比如用Excel进行数据分析的水平); 那么如何做好数据分析呢,今天推荐一篇关于互联网运营中的十大数据分析方法。 1 细分分析 细分分析是分析的基础,单一维度下的指标数据的信息价值很低。 9 用户分析 用户分析是互联网运营的核心,常用的分析方法包括:活跃分析,留存分析,用户分群,用户画像,用户细查等。 本文来源:大数据深度分析 产品简介 政务大数据基因系统是按照国家、行业和地方标准,通过政务数据元、元数据标准化和数据模板化实现数据规范编辑、智能管理、关联应用和共享开放,以提升全域或行业的数据资源活化和管理能级 大数据价值构建师 DT时代组织转型的方案服务商

1.1K80

【数据分析互联网+大数据模式下的征信

图1 技术变革一直推动着征信业的发展   芝麻信用是在大数互联网模式下建立的征信系统。 互联网+大数据征信:广泛、多维、实时 图2 互联网+大数据征信模式的意义   首先,征信人群覆盖广泛,可作为征信体系有效补充。 现有征信记录主要是个人信息加信贷记录,而互联网上的行为记录非常多,我们可以用大数据的方法计算互联网上万个变量,将更多信用记录以外的信息纳入征信体系。 净化互联网环境   在合法合规的前提下,大数据征信公司应科学客观公正地评价个人的信用水平,通过输出各种标准化和定制化的身份识别、反欺诈、信用风险识别与跟踪产品与服务,赋能合作伙伴,并一起推动中国诚信文化的传播和诚信体系的构建 基于大数据7×24小时在线运算能力,芝麻信用有非常强大的身份识别和反欺诈能力,能够以商业化的方法净化互联网环境。人的生物特征包括指纹(这里仅仅是说指纹可以用于进行身份识别和反欺诈。

1K90
  • 广告
    关闭

    【限时福利】腾讯云大数据产品,爆品特惠4.5折起!

    移动推送、BI、ES、云数仓Doris、智能数据分析、数据湖计算DLC,多款产品助您高效挖掘数据潜力,提升数据生产力!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    “小苹果”风靡全国的背后:互联网大数据分析

    ,或者时常打开的“晓松奇谈”都在2014年的各类“大数据峰值”里呢。 随着互联网的发展,“大数据”这个概念已经耳熟能详,但你真的了解它吗?你知道它是怎么被运用,进而影响你的生活的吗? 那就先分析大数据吧。先启动“微电影最有影响力关键词”大数据分析,优酷土豆集团得出观众对微电影中的“音乐”关注度最高的结论。 一场篮球赛形成165万个数据点   体育迷上网享受“导弹追踪技术” 倾向于用互联网获取信息的体育迷,肯定知道悠视网这个网站。 另外,在网络视听方面,可爱的“大数据”还能帮投资者找到“票房毒药”,规避投资风险。 明年初上映的电影《钟馗伏魔》就采用了大数据分析。 其中一个投资方在会上表示,该电影的主创团队都被大数据“分析”了,包括主创团队的历史电影票房、发帖数、转载数等,“大数据分析使我们避开了‘票房毒药’,毕竟电影是个高投资高风险的行业,这样能够规避一些风险。

    43190

    大数据分析下的互联网金融风险预警研究

    为了能更好地控制互联网金融存在的风险,我们必须建立一个以大数据为基础的互联网金融预警系统,从而保证互联网金融健康、安全地发展起来。 一、大数据分类 在互联网金融行业中,大数据贯穿了互联网金融。 这些信用评估能够有效地帮助互联网金融企业对用户的还款能力做出结论,继而为用户提供相关的金融和经济服务。 第二,信用卡大数据。信用卡类网站的大数据同样对互联网金融的风险控制非常有价值。 (二)以数据为中心的系统层级 结合以数据为中心的体系设计原则,预警体系涵盖了数据的收集、数据提取、数据分析和数据结果四个环节。 3、数据分析层 数据分析互联网金融风险管理控制的实施手段。全面的数据分析系统,应包括现行的指标体系、统计模型,及人工智能方法等功能。 四、结论 基于大数据的金融风险预警系统作为保障互联网金融正常运行的工具,在传统金融互联网化的时代背景下,将会得到快速的发展。 文/张澳夫

    1.1K00

    大数据分析大数据分析方法 及 相关工具

    基于此,大数据分析方法理论有哪些呢? ? 大数据分析的五个基本方面 PredictiveAnalyticCapabilities (预测性分析能力) 数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断 AnalyticVisualizations ( 可视化 分析) 不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。 SemanticEngines (语义引擎) 我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。 挖掘 与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,从而实现一些高级别数据分析的需求。

    1.2K80

    大数据分析系统

    概念、分类 数据分析系统的主要功能是从众多外部系统中,采集相关的业务数据,集中存储到系统的数据库中。 根据数据的流转流程,一般会有以下几个模块:数据收集(采集)、数据存储、数据计算、数据分析、数据展示等等。当然也会有在这基础上进行相应变化的系统模型。 按照数据分析的时效性,我们一般会把大数据分析系统分为实时、离线两种类型。实时数据分析系统在时效上有强烈的保证,数据是实时流动的,相应的一些分析情况也是实时的。 而离线数据分析系统更多的是对已有的数据进行分析,时效性上的要求会相对低一点。时效性的标准都是以人可以接受来划分的。 2. 网站流量日志数据分析系统 2.1.

    15320

    大数据分析流程

    一、为什么要做一份数据报告 你是一个在校学生,上着自己喜欢或不喜欢的课,闲来无事,你打开知乎,看到了数据分析话题,你下定决心要成为一个数据分析师,你搞来一堆学习资料和在线课程,看完之后自信满满,准备去投简历 然后发现不清楚各种工具和模型的适用范围,也不知道数据报告需要包括哪些内容,面试的感觉就是一问三不知…… 你是一个工作了一段时间的白领,你觉得现在这份工作不适合你,你下班以后去逛知乎,在上面看到很多人在说大数据代表未来 ,数据分析师是21世纪最性感的十大职业之一……你激动了,你也要成为数据分析师,你利用空余时间补上了统计知识,学了分析工具,然后发现自己目前的工作跟数据分析没啥关系,觉得没有相关经验没公司要你…… 这些问题的根源是什么 一句话可以概括:你没有办法在最短的时间内向招聘者展示,你能够胜任数据分析这项工作。 保证数据的安全性,不对外泄露公司的任何非公开数据,是数据分析师的基本职业道德。

    1.3K41

    何为大数据分析

    基于如此的认识,大数据分析普遍存在的方法理论有哪些呢? 1. 可视化分析。 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了 大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。 4. 语义引擎。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

    50120

    六张图读懂“互联网+电影”:大数据分析 众筹模式

    核心提示:用互联网思维做电影,利用互联网产品和模式,来运作包含制作、发行、放映以及相关衍生物在内的整套流程已是行业未来的发展方向。 另外,据悉,《大圣归来》通过对大数据的分析确定了“英雄回归+合家欢”两大关键点,建立了精准的营销体系。这些深刻的变化或许意味着孤立于互联网的影片将成为历史。 用互联网思维做电影,利用互联网产品和模式,来运作包含制作、发行、放映以及相关衍生物在内的整套流程已是行业未来的发展方向。 传统电影的拍片模式 ? 互联网电影的四大特技 众筹——让每个观众都可能成为投资方 ? 大数据——不能预测彩票,却能预测电影票房 ? 社交网络——爆发推动电影营销新方向 ? 在线售票——电影电商化的第一步 ? 互联网对传统电影的围剿式冲击 ? 内容来源:薄云借智

    71580

    python大数据分析实例-用Python整合的大数据分析实例

    用Python进行数据分析的好处是,它的数据分析库目前已经很全面了,有NumPy、pandas、SciPy、scikit-learn、StatsModels,还有深度学习、神经网络的各类包。 用Python的好处是从数据抽取、数据收集整理、数据分析挖掘、数据展示,都可以在同一种Python里实现,避免了开发程序的切换。 这里就和大家分享我做的一个应用实例。

    12210

    人机交互、大数据分析:移动互联网的技术创新探索

    图片搜索引擎衣+、情绪识别免费API EmoKit、利用大数据自动批改英语作文的批改网、开发高性能电机的星谷实验室、自主研发重症呼吸治疗设备的雅果科技、提供汽车移动互联网解决方案的车车智能等10个创业团队在现场进行激烈角逐 项目3:英文作文智能批改网 简介:批改网利用大数据自动批改英文作文,让老师更轻松,让学生像玩游戏一样学英语,在娱乐中学习和提分。 点评:英语语言算法+大数据分析的成熟应用,已经开始放眼印度、韩国、日本等海外市场。192个考核维度并通过大数据为不同学生及时调整题目,符合以学生为中心的新型学习变革,且解放了更多的英文老师。 项目8:车车智能 简介:一家提供汽车移动互联网解决方案的科技公司。通过系列车载智能硬件产品和简便的App保护并管理汽车。 利用互联网服务+硬件的丰富产品线,为个人用户提供驾驶场景下的移动互联网服务,让每辆车都能成为智能汽车。 点评:瞄准现有汽车存量市场,改造成智能汽车。

    56680

    Spark快速大数据分析

    一、Spark数据分析导论 1.Spark是一个用来实现快速而通用的集群计算的平台,扩展了MapReduce计算模型,支持更多计算模式,包括交互式查询和流处理 2.包括Spark Core、Spark

    40820

    国庆大数据分析思路

    国庆期间移动用户大数据分析,可以从如下几个角度来分析。 国内漫入用户分析 分析国内漫入用户来自哪些省份甚至城市。

    26920

    大数据分析:特征工程

    20710

    大数据分析技术方案

    一.目标 现在已经进入大数据时代, 数据是无缝连接网络世界与物理世界的DNA。发现数据DNA、重组数据DNA是人类不断认识、探索、实践大数据的持续过程。 大数据分析可以有效地促进营销,个性化医疗治病,帮助学生提高成绩,利于老师提高教学水平,还可以用于教学,许多产品可以用到大数据技术,如量化分析金融产品等。 必须加强大数据技术的研究并实际应用.这里对目前最流行和最实用的用户画像技术进行讲解,并分析大数据分析的常用算法。 二.用户画像 1. 可视化分析系统提供系统监控,权限多级管理,多维数据分析,等等功能,还支持自服务式报表设计和数据分析。 如,红酒,长城,干红,对于每个互联网接触点,其中网址决定了权重;内容决定了标签。

    11420

    大数据分析《流浪地球》

    1 数据分析 全部数据均来自豆瓣影评,主要是【‘口碑’,‘评论日期’,‘评论内容’】三方面数据。 csv.DictWriter(fb, header) writer.writeheader() writer.writerows(data_list) 3 数据分析

    37710

    大数据分析那点事

    重复数据处理: 5.2 缺失数据处理 5.3 数据抽取 ---- 一、什么是数据分析据分析是指数据分析师根据分析目的,用适当的分析方法及工具,对数据进行处理与分析,提取有价值的信息,形成有效结论的过程 三、数据分析方法论 数据分析方法论与数据分析法的区别:数据分析方法论主要是用来指导数据分析师进行一次完整的数据分析,它更多的是指数据分析思路,比如从哪些方面展开的数据分析,即从宏观角度来指导如何进行数据分析 :什么是数据分析方法论? 数据分析方法论的几个作用: 可以帮助我们理清楚分析的思路,确保分析过程的体系化 可以看出问题之间的关系 为数据分析的开展指引方向和确保分析结果的有效准确合理性 常用的数据分析方法论 常见的营销方面的理论模型有 四、常用的数据分析工具 工欲善其事,必先利其器。熟练掌握一个数据分析工具可以事半功倍的解决问题。

    13310

    图解大数据 | 大数据分析挖掘-Spark初步

    tutorials/84 本文地址:http://www.showmeai.tech/article-detail/173 声明:版权所有,转载请联系平台与作者并注明出处 ---- 1.Spark是什么 学习或做大数据开发的同学 Apache Spark是一种用于大数据工作负载的分布式开源处理系统。它使用内存中缓存和优化的查询执行方式,可针对任何规模的数据进行快速分析查询。 Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量的廉价硬件之上,形成集群。 Apache Spark 已经成为最受欢迎的大数据分布式处理框架之一。 由加州大学伯克利分校的AMPLabs开发,作为Berkeley Data Analytics Stack(BDAS)的一部分,当下由大数据公司Databricks保驾护航,更是Apache旗下的顶级项目

    24941

    大数据Python:3大数据分析工具

    在这篇文章中,我们将讨论三个令人敬畏的大数据Python工具,以使用生产数据提高您的大数据编程技能。 正如它的网站所述,Pandas是一个开源的Python数据分析库。 让我们启动IPython并对我们的示例数据进行一些操作。 现在有了Pandas,您也可以在Python中进行数据分析。数据科学家通常将Python Pandas与IPython一起使用,以交互方式分析大量数据集,并从该数据中获取有意义的商业智能。 这是来自Apache Spark项目的大数据分析库。 PySpark为我们提供了许多用于在Python中分析大数据的功能。它带有自己的shell,您可以从命令行运行它。 如果您不熟悉大数据并希望了解更多信息,请务必在AdminTome在线培训中注册我的免费大数据入门课程。

    2.5K20

    扫码关注腾讯云开发者

    领取腾讯云代金券