展开

关键词

互联网产品如何建立用户画像

这两天想梳理出来所学所思:用户画像到底是什么?该如何创建用户画像用户画像到底有什么作用? 用户画像介绍 用户画像是根据用户社会属性、生活习惯和消费行为等信息/数据而抽象出的一个标签化的用户模型。 2.2标签体系 不同的标签是对用户不同侧面的量化描述,而一系列的标签集合则构成了标签体系——用户画像用户画像精准到人。用户画像用标签集合来表示。 该如何建立用户画像 ? 为了将焦点关注在目标用户的动机和行为上,就需要建立用户画像,真实用户的虚拟代表。可以采用定性研究的方式通过五步建立用户画像。 确定用户画像优先级时,我们可以主要从以下几个方面来考虑: (1) 使用频率 (2)市场大小 (3)收益的潜力 (4)竞争优势/策略等 Step 5:用户画像 最后一步,完善用户画像。 结语 互联网进入下半场,用户运营时代取代了之前的流量时代,用于精准营销的前提:就是做好产品的用户画像,通过用户画像来辅佐产品设计及用户运营,通过定性、定量及大数据的技术方案建立好用户标签及分群的标签化体系

2K20

用户画像

关于用户画像的概念,数据相关从业人员应该都知道。用户画像的应用场景很广泛,比如精细化运营、数据分析与挖掘、精准营销、搜索和广告的个性化定向推送等。 用户画像的分析核心一个是对用户建模打标签,关于这,之前在内部交流群分享了一份个人学习的资料,大家都觉得真香,今天把全部内容共享出来供大家自行下载阅读。 主要目录: 1、用户画像应用场景 2、产品层面的宏观分析维度 3、用户画像标签类型 4、用户画像项目开发流程 5、数据仓库介绍 6、用户画像数据质量管理 7、常见需要开发的用户画像相关模型 8、用户行为标签表实际开发案例

2.2K20
  • 广告
    关闭

    【玩转 Cloud Studio】有奖调研征文,千元豪礼等你拿!

    想听听你玩转的独门秘籍,更有机械键盘、鹅厂公仔、CODING 定制公仔等你来拿!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用户画像

    开发画像后的标签数据,如果只是“躺在”数据仓库中,并不能发挥更大的业务价值。只有将画像数据产品化后才能更便于业务方使用。 本文主要介绍用户画像产品化后主要可能涵盖到的功能模块,以及这些功能模块的应用场景。 01 即时查询 即时查询功能主要面向数据分析师。 将用户画像相关的标签表、用户特征库相关的表开放出来供数据分析师查询。 Hive存储的相关标签表,包括userid和cookieid两个维度。 图13 对比分析两个人群特征 本文介绍了用户画像产品化主要涵盖的功能模块以及这些模块的应用场景。用户画像产品化是把数据应用到业务服务中的一个重要出口,业务人员熟知业务,但对数据不了解。 本文摘编于《用户画像:方法论与工程化解决方案》,经出版方授权发布。

    1.3K30

    Flink用户画像用户画像行为特征

    INSERT","id":15,"tablename":"user_info","account":"abcd","age":24,"email":"981456@qq.com","status":0} 创建用户画像 reduce.addSink(new CarrierAnalySink()); env.execute("portrait carrier"); } } 创建用户画像会员分类标签 ()); reduce.addSink(new MemberAnalySink()); env.execute("portrait member"); } } 用户画像行为特征 这里我们会分析用户的几个行为,并进行画像 浏览商品行为:频道id、商品id、商品类别id、浏览时间、停留时间、用户id、终端类别(1、PC端,2、微信小程序,3、app)、deviceId。 创建用户画像商品类别偏好标签 创建一个商品类型标签实体类 @Data public class ProductTypeLabel { private Long userid; private

    34610

    用户画像构建

    用户画像是指用户的进行标签化、信息结构化。 构成用户画像的基本元素通常有:姓名、照片、个人信息、经济状况、工作信息、计算机互联网背景。 用来丰富用户画像的元素有:居住地、工作地点、公司、爱好、家庭生活、朋友圈、性格、个人语录等等。 创建用户画像的方法 ? 用户画像的作用 精准营销,分析产品潜在用户,针对特定群体利用短信邮件等方式进行营销; 用户统计,比如中国大学购买书籍人数 TOP10,全国分城市奶爸指数; 数据挖掘,构建智能推荐系统,利用关联规则计算 ,喜欢红酒的人通常喜欢什么运动品牌,利用聚类算法分析,喜欢红酒的人年龄段分布情况; 进行效果评估,完善产品运营,提升服务质量,其实这也就相当于市场调研、用户调研,迅速下定位服务群体,提供高水平的服务; 对服务或产品进行私人定制,即个性化的服务某类群体甚至每一位用户; 业务经营分析以及竞争分析,影响企业发展战略。

    1.3K11

    用户画像基础

    导读:在互联网步入大数据时代后,用户行为给企业的产品和服务带来了一系列的改变和重塑,其中最大的变化在于,用户的一切行为在企业面前是可“追溯”“分析”的。 图1-1 某用户标签化 大数据已经兴起多年,其对于互联网公司的应用来说已经如水、电、空气对于人们的生活一样,成为不可或缺的重要组成部分。 图1-6 用户画像建设项目流程 第一阶段:目标解读 在建立用户画像前,首先需要明确用户画像服务于企业的对象,再根据业务方需求,明确未来产品建设目标和用户画像分析之后的预期效果。 就后文将要介绍的案例而言,需要从用户属性画像用户行为画像用户偏好画像用户群体偏好画像等角度去进行业务建模。 面向业务方推广应用:用户画像最终的价值产出点是业务方应用画像数据进行用户分析,多渠道触达运营用户,分析ROI,提升用户活跃度或营收。

    2.1K50

    用户画像总结

    二、 用户画像的作用 在互联网、电商领域用户画像常用来作为精准营销、推荐系统的基础性工作,其作用总体包括: (1)精准营销:根据历史用户特征,分析产品的潜在用户用户的潜在需求,针对特定群体,利用短信、 (5)行业报告&用户研究:通过用户画像分析可以了解行业动态,比如人群消费习惯、消费偏好分析、不同地域品类消费差异分析 根据用户画像的作用可以看出,用户画像的使用场景较多,用户画像可以用来挖掘用户兴趣 在互联网领域,用户画像数据可以包括以下内容: (1)人口属性:包括性别、年龄等人的基本信息 (2)兴趣特征:浏览内容、收藏内容、阅读咨询、购买物品偏好等 (3)消费特征:与消费相关的特征 (4)位置特征 五、 用户画像主要应用场景 a)用户属性 b)用户标签画像 c)用户偏好画像 d)用户流失 e)用户行为 f)产品设计 g) 个性化推荐、广告系统、活动营销、内容推荐、兴趣偏好 六、 用户画像使用的技术方法 八、 用户画像基本步骤[F2] 根据具体业务规则确定用户画像方向后,开展用户画像分析,总体来说,一个用户画像流程包括以下三步。

    7110

    如何构建用户画像

    image.png 在《4个问题带你了解用户画像》中,我们了解了用户画像的定义、作用及使用注意事项等。 就有用户留言问了:在实际工作中,构建用户画像的方法有哪些?如何构建用户画像呢? 下面我将结合通过案例,带你了解构建用户画像的4个步骤: image.png 用户画像是为业务服务的,因此我们构建画像之前一定要清晰项目背景和业务需求。 用户归类 image.png 回顾用户画像的定义:用户画像是目标用户的代表性画像,其中包含了用户属性、场景、痛点和需求等。 实际构建过程中,我们往往无法用一个画像代表所有目标用户。 验证效果 image.png 我们开篇强调过,用户画像是为业务服务的。因此提炼画像不是工作的结束,促进画像运用和验证效果也是重要步骤。 ; 最后提炼用户基本关键、痛点、关键差异及用户故事,组成用户画像

    19300

    如何构建用户画像

    在《4个问题带你了解用户画像》中,我们了解了用户画像的定义、作用及使用注意事项等。 就有用户留言问了:在实际工作中,构建用户画像的方法有哪些?如何构建用户画像呢? 下面我将结合通过案例,带你了解构建用户画像的4个步骤: 用户画像是为业务服务的,因此我们构建画像之前一定要清晰项目背景和业务需求。 用户归类 回顾用户画像的定义:用户画像是目标用户的代表性画像,其中包含了用户属性、场景、痛点和需求等。 实际构建过程中,我们往往无法用一个画像代表所有目标用户。 其实在画像背后,是丰富的资料库和调研信息。用户画像强调简单易用,但当实际工作中需要例证和具体数据时,我们依旧可以调用其他信息。 4. 验证效果 我们开篇强调过,用户画像是为业务服务的。 、关键差异及用户故事,组成用户画像

    65230

    如何构建用户画像

    伴随着对人的了解逐步深入,一个概念悄然而生:用户画像(UserProfile),完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 一、什么是用户画像? 二、为什么需要用户画像 用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少? 所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。 3.1 数据源分析 构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。 当行为集中到互联网,乃至电商,用户行为就会聚焦很多,如上图所示:浏览凡客首页、浏览休闲鞋单品页、搜索帆布鞋、发表关于鞋品质的微博、赞“双十一大促给力”的微博消息。等等均可看作互联网用户行为。 本篇文章以互联网电商用户,为主要分析对象,暂不考虑线下用户行为数据(分析方法雷同,只是数据获取途径,用户识别方式有些差异)。 在互联网上,用户行为,可以看作用户动态信息的唯一数据来源。

    1.1K60

    什么是用户画像

    0x00 前言 视频号分享中【什么是用户画像】的文案,文字版分享给大家~内容虽然短,但是能锻炼在1分钟讲一个概念的能力,如果以后有朋友问你用户画像是什么,你可以用下面1分钟左右的文稿告诉他。 今天要和大家分享的话题是:用户画像。 0x01 画像 那么,什么是用户画像呢?我来举个例子说明: 假设你有一位朋友:他是一名35岁左右的男性,周六日喜欢宅在家里,而且每天点外卖。 那把上面这些标签和在一起,就形成了你朋友的用户画像,看一下,熟悉吗? 0x02 应用 那么有了这些画像之后,有什么用呢?

    53410

    什么是用户画像——从零开始搭建实时用户画像(一)

    用户画像 简介 用户画像,作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。 建立用户画像和精准化分析是关键。 用户画像可以使产品的服务对象更加聚焦,更加的专注。 这只是用户画像在电商领域的应用,事实上用户画像已经不知不觉的渗透到了各个领域,在当前最火的抖音,直播等领域,推荐系统在大数据时代到来以后,用户的一切行为都是可以追溯分析的。 步骤 什么是用户画像用户画像是根据市场研究和数据,创建的理想中客户虚构的表示。创建用户画像,这将有助于理解现实生活中的目标受众。 用户画像最重要的一个步骤就是对用户标签化,我们要明确要分析用户的各种维度,才能确定如何对用户进行画像

    6.2K33

    用户画像标签体系

    在数据的基建和应用层面,除了重视数据分析外,也越来越重视数据资产在更多业务场景中的应用,标签画像的建设和应用就是其中一类很常见的需求和期望。 从对业务的价值来说,标签和画像是类似中间层的系统模块,具体来说,数据资产本质上是一些采集、采购所获得的数据源,但企业希望在数据源的基础上,实现资产变现,而且不断扩大资产价值。 很多企业都意识到,这个中间层就是标签画像。 下面主要介绍了企业做标签画像的目的,重点阐述标签和画像的应用场景及应用流程,构建标签和画像体系的实操方法论,最后给出了行业案例。

    21050

    什么是用户画像?金融行业大数据用户画像实践

    进入移动互联网时代之后,金融业务地域限制被打破。金融企业没有固定业务区域,金融服务面对所有用户是平的。 金融消费者逐渐年轻化,80、90后成为客户主力,他们的消费意识和金融意识正在增强。 3)证券行业用户画像 2015年4月13日,一码通实施之后,证券行业面临了互联网证券平台的强力竞争,依据TalkingData发布的金融App排行榜,移动互联网证券App,排名前5位的证券类App,只有一家传统券商华泰证券 排名第一的互联网券商同化顺覆装机量是排名第一传统券商的6倍,前三名的互联券商总体覆盖用户接近6000万用户用户总数还在不断增加。 七、移动大数据的商业价值 移动互联网时代,移动大数据具有较高的商业价值。如果一个用户不喜欢一个App,其不会装在手机上。客户经常使用的App可以推测用户的兴趣爱好和消费偏好。 如果用户经常在半夜2点频繁使用App,其成为高风险客户的概率就较大。 移动大数据在预防互联网恶意欺诈和高风险客户识别方面,已经有了成熟的应用场景。

    62360

    什么是用户画像?金融行业大数据用户画像实践

    进入移动互联网时代之后,金融业务地域限制被打破。金融企业没有固定业务区域,金融服务面对所有用户是平的。 金融消费者逐渐年轻化,80、90后成为客户主力,他们的消费意识和金融意识正在增强。 3)证券行业用户画像 2015年4月13日,一码通实施之后,证券行业面临了互联网证券平台的强力竞争,依据TalkingData发布的金融App排行榜,移动互联网证券App,排名前5位的证券类App,只有一家传统券商华泰证券 排名第一的互联网券商同化顺覆装机量是排名第一传统券商的6倍,前三名的互联券商总体覆盖用户接近6000万用户用户总数还在不断增加。 七、移动大数据的商业价值 移动互联网时代,移动大数据具有较高的商业价值。如果一个用户不喜欢一个App,其不会装在手机上。客户经常使用的App可以推测用户的兴趣爱好和消费偏好。 如果用户经常在半夜2点频繁使用App,其成为高风险客户的概率就较大。 移动大数据在预防互联网恶意欺诈和高风险客户识别方面,已经有了成熟的应用场景。

    89530

    用户画像】大数据之用户画像的原理、应用与实现

    用户画像使用标签来量化用户特征属性,达到描述用户的目的。用户画像是对现实世界中的用户进行建模。用户画像是描述用户的数据, 是符合特定业务需求的对用户的形式化描述。 用户画像,即用户信息标签化。 用户画像的本质 专业术语:人物角色 企业使用术语:用户画像 技术原理:数据清理、分析、统计、打标签、用户信息标签化 为什么使用用户画像互联网进入大数据时代后,给企业及消费者行为带来一系列改变,其中最大的变化 ,需要对用户喜欢做精确的画像,提高用户的体验 基础画像(对用户注册信息画像用户播放历史画像用户关键词,影片画像) 播放指标画像(最新的,最热的,播放量) 视频质量画像用户观看质量,观看时间) 视频相关度画像 (每个视频相关视频TOP N) 推荐营销视频画像 用户热点画像 用户金融信誉等级画像 互联网金融大数据,需要对用户信用等级做评估,就需要对用户信用画像 恶意贷款负债画像 用户固有资产画像(车、房产、企业信誉 ) 用户经济能力画像(工资、纳税额) 用户消费能力画像(购买消费) 用户关系圈画像(职称、朋友信用等级) 用户互联网画像(微博、微信) 标准用户画像用户信用区间等级评定) 移动电信集中监管系统画像 移动电信集中监管系统画像是对用户的通信数据等各种指标进行画像分析

    2.8K11

    如何构建用户画像

    伴随着对人的了解逐步深入,一个概念悄然而生:用户画像(UserProfile),完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 一、什么是用户画像? 二、为什么需要用户画像 用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少? 所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。 3.1 数据源分析 构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。 当行为集中到互联网,乃至电商,用户行为就会聚焦很多,如上图所示:浏览凡客首页、浏览休闲鞋单品页、搜索帆布鞋、发表关于鞋品质的微博、赞“双十一大促给力”的微博消息。等等均可看作互联网用户行为。 本篇文章以互联网电商用户,为主要分析对象,暂不考虑线下用户行为数据(分析方法雷同,只是数据获取途径,用户识别方式有些差异)。 在互联网上,用户行为,可以看作用户动态信息的唯一数据来源。

    1.1K80

    58用户画像实践

    58用户画像应用流程如下: ? 二、58用户画像数据架构 用户画像构建的核心是数据的组织和标签的开发管理,58集团业务覆盖广泛,涉及房产、招聘、车辆、黄页等众多业务线,构建画像的数据来自于日志、简历库、帖子库、用户信息库、商家库 58用户画像系统架构如下: ? 基于用户画像数据的建模如下: ? 依赖用户画像平台建模可以被抽象为5个层级: 1.基础数据接入 用户画像平台已经接入58、赶集、安居客等主要数据源,也支持用户通过平台提供的数据接入工具接入新数据源,以便支持定制化的建模; 2.IDMapping

    3.3K31

    相关产品

    • 企业画像

      企业画像

      企业画像是腾讯云推出的面向智慧城市、金融监管、企业情报、企业评估等场景的企业大数据综合服务平台。通过构建亿级企业知识图谱,深度挖掘企业、高管、法定代表人、产品、产业链间的复杂网络关系,提供城市、区域宏观经济分析、招商引资推荐服务,引导地方产业发展……

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券