学习
实践
活动
专区
工具
TVP
写文章

AndroidStudio:手势识别

一内容:设计一个手写字体识别程序。 二实现 ①建立一个存放手写字体的数据库 ②activity_main.xml <?xml version="1.0" encoding="utf-8"? (GestureOverlayView)findViewById(R.id.gesture); gest.addOnGesturePerformedListener(this); // 注册手势识别的监听器 mLibrary.load()) { finish(); } } /*根据画的手势识别是否匹配手势库里的手势*/ @Override public void onGesturePerformed GestureOverlayView gest, Gesture gesture) { ArrayList gestList = mLibrary.recognize(gesture); // 从手势库获取手势数据 以上所述是小编给大家介绍的AndroidStudio手势识别详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对ZaLou.Cn网站的支持!

54710
  • 广告
    关闭

    2023新春采购节

    领8888元新春采购礼包,抢爆款2核2G云服务器95元/年起,个人开发者加享折上折

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    AR开发--(二)手势识别-FingerGestures

    内部脚本 关于手势脚本 ? 少写的是捏的手势识别脚本 3、开搞 FingerGesture的作用是管理用户输入和识别手势和鼠标或手指事件。 ? 打印点击的位置信息 原理:其实通过Unity的事件通知SendMessage来传递消息 手势识别 每种手势都有自己的脚本,我们只需要简单的实现它就是ok的 1、添加对应的手势脚本,设置它的属性 2、监听它的手势事件和对应响应 一个手势识别器有以下监听事件的方式: 1、使用标准的.net 委托事件模型,每一个手势识别器都暴露一个.net事件接口 2、使用unity的SendMessage()函数 : 本质来讲这个内部主要是封装 Api,还有我们获取相关的游戏对象是通过射线检测来进行识别操纵 ? Paste_Image.png 接下来利用我们的点图案识别 ? 是不是很简单 对勾被识别了,通过测试我们发现只要不是对勾是不会被识别的。 ? 当然我们还可以控制组件的所在层来进行更高效的操作 ?

    87920

    基于 Openpose 实现人体动作识别

    人体姿态识别作为行为监测重要参考依据在视频捕捉、计算机图形学等领域得到了广泛应用。 其中传统的人体姿态识别方法有RMPE模型和Mask R-CNN模型,它们都是采用自顶向下的检测方法,而Openpose作为姿态识别的经典项目是采用的自底向上的检测方法,主要应用于行为监测、姿态纠正、动作分类 在多人目标姿态识别方面,历史上常见的方法有通过自顶而下的候选关键点查找并结合空间联系优化算法匹配人物以及通过建立部分亲和字段的方法实现关键点检测到人体骨架连接等等。 在此次的模型中通过调用轻量级的openpose模型进行人体姿态识别,其主要的方法是通过openpose获取人体各个骨骼关键点位置,然后通过欧氏距离进行匹配两个骨骼来具体检测到每一个人,对于常见检测中骨骼关键点的缺失可以通过上一帧的骨骼信息进行填充 1.1 Openpose环境的构建 openpose是依赖于卷积神经网络和监督学习实现人体姿态评估算法,其主要的优点在于适用于多人二维且较为精准和迅速的识别开源模型。

    3.3K30

    python实现手势识别的示例(入门)

    使用open-cv实现简单的手势识别。刚刚接触python不久,看到了很多有意思的项目,尤其时关于计算机视觉的。 网上搜到了一些关于手势处理的实验,我在这儿简单的实现一下(PS:和那些大佬比起来真的是差远了,毕竟刚接触不久),主要运用的知识就是opencv,python基本语法,图像处理基础知识。 窗口大小 cv2.rectangle(src, (90, 60), (300, 300 ), (0, 255, 0))#框出截取位置 roi = src[60:300 , 90:300] # 获取手势框图 到此这篇关于python实现手势识别的示例(入门)的文章就介绍到这了,更多相关python 手势识别内容请搜索ZaLou.Cn以前的文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn!

    1.5K20

    Python实现AI视频识别——手势控制

    用opencv识别手势 实现原理 用opencv库拍摄一帧图片,用mediapipe库识别人手和标识点,然后用opencv在视频上添加标识的信息,最后用opencv合成一个动态视频输出 代码 import 如果找到了手上的标识点 for handLms in self.results.multi_hand_landmarks: if draw: # 在识别出的手上把标记点画出来 坐标位置 lmList.append([idNum, cx, cy]) # 可以在这里print一下看看长什么样 if draw: # 在识别出的点位置画个蓝点 8 if fingers[4] == 1: # 小指竖起来 output += 16 # 处理视频,画个方框,上面写识别到的数字 用手指表示数字还有别的待开发用途,比如用手势来控制音量和屏幕亮度等等。 感兴趣的同学可以尝试实现以上功能。有任何问题和想法欢迎私信和评论区留言!

    40620

    体感游戏 | 手势识别玩飞机大战游戏(二) Python+OpenCV实现简易手势识别功能

    后面将分四篇文章来介绍实现手势识别控制飞机大战游戏的功能,它们分别是: 使用Pygame实现简易飞机大战小游戏 使用Python+OpenCV实现简单手势识别 使用OpenCV实现手势识别玩飞机大战游戏 使用TensorFlow实现手势识别玩飞机大战游戏 ---- 今天是第二部分:Python+OpenCV实现简易手势识别功能。 简易的手势识别,所以功能也很简单,识别手势1~5就行,当然我们控制飞机时只需要用到最多3个手势:发射子弹、向左移动和向右移动。 手势识别的实现步骤也比较简单,分以下三个步骤: HSV提取包含手势区域轮廓 计算轮廓多边形逼近和凸包缺陷 通过凸包缺陷距离来判断手指缝数量来计算手势 ---- (1) HSV提取肤色轮廓,然后筛选找出手部轮廓 视频效果: 源码请在公众号回复"手势识别"即可获取,更多视觉学习资讯请关注:OpenCV与AI深度学习,感谢支持!

    83610

    体感游戏 | 手势识别玩飞机大战游戏(三) 使用OpenCV实现手势识别玩飞机大战游戏

    后面将分四篇文章来介绍实现手势识别控制飞机大战游戏的功能,它们分别是: 使用Pygame实现简易飞机大战小游戏 使用Python+OpenCV实现简单手势识别 使用OpenCV实现手势识别玩飞机大战游戏 使用TensorFlow实现手势识别玩飞机大战游戏 ---- 今天是第三部分:使用OpenCV实现手势识别玩飞机大战游戏的功能。 前面的两篇文章我们已经介绍了使用Pygame实现一个简易的飞机大战游戏以及使用Python+OpenCV实现简单手势识别。 先打开并运行pygame游戏界面,然后运行手势识别程序,将鼠标点击到游戏界面窗口,然后通过手势识别控制飞机行动,效果如下: ? 下篇文章我们来介绍使用TensorFlow来替代OpenCV手势识别来控制飞机行动玩游戏,敬请期待。

    43310

    基于LSTM-CNN的人体活动识别

    来源:DeepHub IMBA本文约3400字,建议阅读10+分钟本文带你使用移动传感器产生的原始数据来识别人类活动。 人体活动识别(HAR)是一种使用人工智能(AI)从智能手表等活动记录设备产生的原始数据中识别人类活动的方法。当人们执行某种动作时,人们佩戴的传感器(智能手表、手环、专用设备等)就会产生信号。 人类活动识别有各种各样的应用,从为病人和残疾人提供帮助到像游戏这样严重依赖于分析运动技能的领域。我们可以将这些人类活动识别技术大致分为两类:固定传感器和移动传感器。 在本文中,我们使用移动传感器产生的原始数据来识别人类活动。 机器学习方法在很大程度上依赖于启发式手动特征提取人类活动识别任务,而我们这里需要做的是端到端的学习,简化了启发式手动提取特征的操作。

    23620

    基于LSTM-CNN的人体活动识别

    人体活动识别(HAR)是一种使用人工智能(AI)从智能手表等活动记录设备产生的原始数据中识别人类活动的方法。当人们执行某种动作时,人们佩戴的传感器(智能手表、手环、专用设备等)就会产生信号。 人类活动识别有各种各样的应用,从为病人和残疾人提供帮助到像游戏这样严重依赖于分析运动技能的领域。我们可以将这些人类活动识别技术大致分为两类:固定传感器和移动传感器。 在本文中,我们使用移动传感器产生的原始数据来识别人类活动。 在本文中,我将使用LSTM (Long - term Memory)和CNN (Convolutional Neural Network)来识别下面的人类活动: 下楼 上楼 跑步 坐着 站立 步行 概述 机器学习方法在很大程度上依赖于启发式手动特征提取人类活动识别任务,而我们这里需要做的是端到端的学习,简化了启发式手动提取特征的操作。

    31420

    飞桨手势识别带你玩转神庙逃亡

    因此,我们引入了一种新的人机交互模式——手势识别交互。 手势交互方式符合人类思维逻辑,具有自然性和直观性等特点。使用者不需要有过高的门槛,便可以很好地体验到人机交互的乐趣。 项目内容 手势识别交互系统采用分层架构、模块化方式进行设计,可满足系统定制及扩展的灵活要求。主要包括:前端采集模块、算法模块、通信模块。 ? 浮窗实时预览效果(镜像显示) 02 算法模块 算法模块负责对输入的手势图片进行分类,并将识别结果返还。此部分的开发流程如下所示。 ? 1. 02 平板电脑端神庙逃亡游戏 03 嵌入式板+电视投屏端神庙逃亡游戏 总结 我们的手势识别交互系统是面向人机交互的嵌入式应用程序,用户仅需使用带有摄像头的安卓设备便可以利用手势实现对界面(游戏)的控制。 本项目中手势指令发出、识别不依赖任何可穿戴的设备,可以使用户获得沉浸式体验,并可带动相关游戏开发、设备制造等产业的发展。相信手势识别等AI技术在未来会更加完善,改善人类生活。

    36730

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • 人体分析

      人体分析

      人体分析包含人像分割、人体识别、行人重识别(Reid)等服务。人像分割可识别视频、图片中的半身人体轮廓,并将其与背景分离;人体检测,可识别行人的穿着、体态、发型等信息;行人重识别(Reid)可实现跨摄像头跨场景下行人的识别与检索。可应用于人像抠图、背景特效、行人搜索、人群密度检测等场景。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券