展开

关键词

基于 Openpose 实现人体动作识别

人体姿态识别作为行为监测重要参考依据在视频捕捉、计算机图形学等领域得到了广泛应用。 其中传统的人体姿态识别方法有RMPE模型和Mask R-CNN模型,它们都是采用自顶向下的检测方法,而Openpose作为姿态识别的经典项目是采用的自底向上的检测方法,主要应用于行为监测、姿态纠正、动作分类 在多人目标姿态识别方面,历史上常见的方法有通过自顶而下的候选关键点查找并结合空间联系优化算法匹配人物以及通过建立部分亲和字段的方法实现关键点检测到人体骨架连接等等。 在此次的模型中通过调用轻量级的openpose模型进行人体姿态识别,其主要的方法是通过openpose获取人体各个骨骼关键点位置,然后通过欧氏距离进行匹配两个骨骼来具体检测到每一个人,对于常见检测中骨骼关键点的缺失可以通过上一帧的骨骼信息进行填充 1.1 Openpose环境的构建 openpose是依赖于卷积神经网络和监督学习实现人体姿态评估算法,其主要的优点在于适用于多人二维且较为精准和迅速的识别开源模型。

2K30

机器人体验营笔记(二)基础

版权声明:署名,允许他人基于本文进行创作,且必须基于与原先许可协议相同的许可协议分发本文 (Creative Commons)

39010
  • 广告
    关闭

    老用户专属续费福利

    云服务器CVM、轻量应用服务器1.5折续费券等您来抽!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    机器人体验营笔记(一)概要

    掌握计算机视觉技术使用OpenCV识别标记的对象。 设计机器人环境,实现基于视觉地标的定位和导航。 使用语音识别实现机器人的语音控制。

    27110

    机器人体验营笔记(四)实践

    版权声明:署名,允许他人基于本文进行创作,且必须基于与原先许可协议相同的许可协议分发本文 (Creative Commons)

    22320

    Zynq-7000 人体肤色识别

    Zynq-7000 人体肤色识别 1 背景知识 在肤色识别算法中,常用的颜色空间为Ycbcr,Y代表亮度,cb代表蓝色分量,cr代表红色分量。 2.1 肤色识别IP的介绍 ? 从总体模块图可以看到首先实现rgb颜色空间转ycbcr颜色空间,其次实现肤色识别。 2.3 实验结果 ? 实验原图1 ? 实验原图2 ? 实验结果图1 ? 实验结果图2 结果分析:从实验原图和实验结果来看,肤色识别模块将某些非肤色部分也识别称肤色,这里我们需要改变的对肤色进行判定的条件: Cb > 77 && Cb < 127 Cr > 133 && Cr < 173 调整cb和cr分量的阈值来达到最佳的肤色识别效果。

    36210

    机器人体验营笔记(三)进阶

    清洁机器人通过传感器识别地板、瓷砖或地毯,应用不同的清扫策略。

    26120

    GAN提高人体识别准确率

    论文地址https://arxiv.org/abs/1701.07717内容简介 这篇文章的主要贡献是只使用原始数据集进行半监督学习,提高行人重识别的Baseline。 rank-1 accuracy=83.97%, mAP=66.07% 在在CUHK03上rank-1 accuracy = 84.6%, mAP = 87.4% 如下图: 思考: 一开始并没有弄清行人重识别的概念 ,一直按照分类的思想去理解,论文有很多不能理解的地方,后来查阅资料,还有数据集了解到行人重识别一般指图像检索而不是图像分类。

    92270

    【讲座预告】利用NVIDIA Maxine识别人体姿势

    利用NVIDIAMaxine识别人体姿势 Time: 2022/05/19  8:00pm~~9.30pm Duration: 1.5h Course Description: 随着AI技术的发展,数字内容创建业务也变得越来越火热 而在这些功能背后,离不开姿势识别,人脸特征点识别,虚拟背景,现实增强等技术的支持。 NVIDIA Maxine是一套GPU加速的SDK,它用人工智能重塑了音频和视频,提升了标准麦克风和摄像头的能力。 使用一个标准的摄像头,使实时身体姿态识别成为可能。能够让您享受有趣、迷人的AR效果。 Webinar您可以了解到: NVIDIA Maxine的功能 NVIDIA Maxine 的API接口 在Windows平台上利用NVIDIAMaxine进行开发 示例:利用NVIDIAMaxine搭建一个人体姿势识别系统 对于图像识别,目标的检测与跟踪完成过多种解决方案。曾经参与GPU 版气象模式GRAPES,是其主要研发者。 扫描二维码报名: 点击阅读原文,了解更多社区讲座 更多关于姿态识别

    10720

    Python调用腾讯云人体分析实现识别行人

    人体分析 腾讯云神图·人体分析(Body Analysis)基于腾讯优图领先的人体分析算法,提供人像分割、人体检测、行人重识别(ReID)等服务。 支持识别图片或视频中的半身人体轮廓,并将其与背景进行分离;支持通过人体检测,识别行人的穿着、体态等属性信息,实现跨摄像头跨场景下行人的识别与检索。 image.png Python调用腾讯云人体分析实现识别行人 过程分析:先上连接大家看一下腾讯的产品 腾讯云的人体分析网址 1.工具 腾讯云的API需要调用的是网上的图片,返回的结果是一串稍微复杂的信息 2.问题 python要画图只能对本地文件画图,而腾讯云的人体分析API需要的是线上的图片(即链接),所以这里我就把线上的图片下载下来放在本地,然后python就可以画图了,所以其实是同一张图。 (可以参照我上一篇文章,把图片上传到对象存储的桶里) 3.步骤总结: 调用腾讯云人体分析API->对返回的数据进行处理并存储->用Python的第三方库画图,框出行人。

    18440

    基于人体骨架的行为识别【附PPT与视频资料】

    关注文章公众号 回复"司晨阳"获取PPT资料 视频资料可点击下方阅读原文在线观看 导读 ---- 基于人体骨架的行为识别是一个重要而且具有挑战性的计算机视觉任务。 人体图像视频不仅包含了复杂的背景,还有光照变化、人体外貌变化等不确定因素,这使得基于图像视频的行为识别具有一定的局限性。 相比图像视频,人体骨架视频可以很好地克服这些不确定因素的影响,所以基于人体骨架的行为识别受到越来越多的关注。 Introduction ---- 近几年基于人体骨架的行为识别已经有很多工作,这些工作在公开数据库上的精度都有很好的提升,但是仍然有一些问题没有解决:1、人的运动是由各个part协调完成的,如行走不仅需要腿的运动 以提升网络对细节行为的理解,不仅加速了网络的收敛,而且可以明显提升行为识别精度。 Experiments ---- 所提出的方法在两个行为识别数据集上验证了有效性,取得了当前最好的识别精度。

    37650

    HuBMAP: 识别人体肾脏组织图像中的肾小球

    人体有大约37万亿个细胞,而对细胞的研究有助于我们理解生命进而改善人类的健康。

    48920

    机器人体验营笔记(五)总结 Cozmo+ROS+AI

    版权声明:署名,允许他人基于本文进行创作,且必须基于与原先许可协议相同的许可协议分发本文 (Creative Commons) 体验课程的主要内容包括机器人学、机器人操作系统和人工智能的基础知识与演示 链接:https://share.weiyun.com/5zhsQKN 密码:nt3eji Cozmo机器人之ROS和AI体验(训练)营-2019-ROS暑期学校 日程安排全部链接:http://www.roseducation.org /ros2019/prog.html 内容初稿: activity details Cozmo机器人ROS和AI趣味实践课程,包括运动控制,语音交互,视频采集,物体识别,环境建模,自动驾驶和货物搬运等

    51610

    离职总结:大公司与小公司的个人体验

    离职在即,在准备下一个工作环境的这段时间,忽然有一阵感慨,工作近五年,在这段时间中,体验了两种不同的工作环境:一个规模很大,各种开发体系完备的大公司,另一个(也是目前的)是一个规模 100 人左右的小公司 是啊,适不适合,不是别人一句话说的算的,还是要亲自体验才能知道是否合适。 ? 流程控制,大公司讲流程,全程 QA 跟随,每一个环节都有很正式的「小仪式」。 就像在正常情况下,测试和开发是有点敌对的,但是作为体验了测试和开发的工作之后,在测试时我理解开发的固执,在做开发时我也能理解测试的找茬,这样就很好了。都是为了项目能做好,只是出发点不同。

    34550

    基于人体骨骼点的动作识别

    基于骨骼点的动作识别 (Skeleton-based Action Recognition) 旨在从一系列时间连续的人体骨骼点中识别正在执行的动作。 相较于 RGB 帧或光流,人体骨骼这一模态与人体动作天然更密切,且更加紧凑。 因此,人体骨骼模态在各类动作识别任务中有广泛的应用。 基于骨骼点的动作识别的动作识别,往往具有比基于其他模态的算法更轻量,更具泛化性的特点。 MMAction2 中提供了以下大部分数据集由 HRNet 提取的 2D 人体关键点,这种方式提取的人体骨骼质量较高,在各个数据集上都可以取得良好的性能。 数据预处理 OpenPose 是一个标注人体的关节(颈部,肩膀,肘部等),连接成骨骼,进而估计人体姿态的算法。

    1K30

    博客 | Github开源人体姿态识别项目OpenPose中文文档

    logo OpenPose人体姿态识别项目是美国卡耐基梅隆大学(CMU)基于卷积神经网络和监督学习并以caffe为框架开发的开源库。可以实现人体动作、面部表情、手指运动等姿态估计。 OpenPose项目Github链接:https://github.com/CMU-Perceptual-Computing-Lab/openpose 为了便于中国开发者学习CMU开源人体姿态识别项目, Translattor: Tommy in Tongji Univerisity Opensource Software Association 人体姿态识别与估计的应用场景:抖音尬舞机、体育动作教学、 一些人体姿态识别案例案例: 《芳华》文工团跳舞视频片段:人体姿态识别 ? 《芳华》文工团跳舞视频片段:人体姿态识别 《叶问》武打视频片段:人体姿态识别 ? 最近更新 Sep 2018: 单人位置追踪测试 增加处理速度,观看体验更加流畅! Jun 2018: 躯干、脚部联合检测的模型发布!速度加快40%,精确度增加5%!

    6.9K40

    OCR图像识别体验(一)

    python使用库:PIL pytesseract 主要辅助识别程序:Tesseract-OCR 个人踩坑经历-实测有效 代码块: from PIL import Image import pytesseract 设置为安装目录下的tessdata目录 如:D:\Program Files (x86)\Tesseract-OCR\tessdata 设置了环境变量后需要重启下才生效 执行前文代码即可 ‘’示例 识别结果 识别原图 错误率有点儿高 附上其他相关学习链接: 1)https://zhuanlan.zhihu.com/p/30391661?

    7320

    情感识别技术变革人机交互体验

    最近俄亥俄州立大学的认知研究科学家们在人脸识别技术和机器学习方面有了突破性进展,能够让电脑比人类更准确地读取面部表情进而识别情感状态。 然后用这些照片产生了21个独特的可被计算机识别的面部表情模型,这个数量是以前研究人员用于识别人类情感的面部表情模型数的三倍以上。 临床应用——识别研究科学家可以用面部动作编码系统识别基因、化学混合物以及大脑用来调节情感产物的神经元回路。情感识别技术还能用来诊断孤独症、创伤后应激障碍或面部表情不直接反应情感的其它情况。 ARIS点评 巨大的潜力——实时情感识别技术可以极大地改善所收集的信息的数量和质量,从而达到最优的用户体验目的。 这类设备的广泛使用确保了情感识别技术能够得到快速普及。 隐私担忧——对隐私和保密权利的顾虑会阻碍情感识别技术在消费市场中的普及。

    72270

    人体姿态检测概述

    人体姿态检测分为两种方式,一种是自顶向下,一种是自底向上。 自顶向下: 先找人,将人体进行目标框检测,再在目标框内去找人体的关键点,再进行关键点的连接。 自底向上: 先找点,后归纳。 但是这样会造成信息的丢失,对于姿态估计这种任务,全身不同的关键点,比如手腕、鼻子等并不是在相同的feature map上有最好的识别精度。 比如说胳膊会在第二个卷积层上比较容易识别,头部会在第四个卷积层上更容易识别。所以如果仅仅在最后一层来进行识别的话会造成信息丢失。所以这个时候需要使用可以识别多个feature map的网络结构。 我们的目的是检测穿绿色衣服的人体姿态。由图片可知,穿绿色衣服的人体并未位于图片中间,由于SPPE对位置错误非常敏感,我们需要使得穿绿色衣服的人体位于图片的中间。 自底向上的人体姿态估计并不会先去识别一个人体,而是先找人体的关键点。 输入作为一张图像,然后它会有两个分支。

    56550

    MMAction2 | 基于人体姿态的动作识别新范式 PoseC3D

    不同于传统的基于人体 3 维骨架的 GCN 方法,PoseC3D 仅使用 2 维人体骨架热图堆叠作为输入,就能达到更好的识别效果。这项工作已被开源在 MMAction2 中。 由于模型基于 3D-CNN,PoseC3D 所提取的人体骨骼特征可以更自由地与其他模态(如 RGB)的特征进行融合,从而得到更好的识别效果。 PoseC3D: 一种基于 3D-CNN 的骨骼动作识别方法 识别流程 人体姿态提取 人体姿态提取是骨骼动作识别中非常重要的一个环节,但在此前研究中并未受到足够关注。 首先,考虑到二维人体姿态具备更高的质量,我们选择了以二维人体姿态而非三维作为输入。 在实验中,我们对不同来源的二维 / 三维人体姿态进行了公平的比较。 我们发现,即使基于轻量主干网络(MobileNetV2)所预测的二维姿态,用于动作识别时,效果也好于任何来源的三维人体姿态。

    60920

    相关产品

    • 人体分析

      人体分析

      人体分析包含人像分割、人体识别、行人重识别(Reid)等服务。人像分割可识别视频、图片中的半身人体轮廓,并将其与背景分离;人体检测,可识别行人的穿着、体态、发型等信息;行人重识别(Reid)可实现跨摄像头跨场景下行人的识别与检索。可应用于人像抠图、背景特效、行人搜索、人群密度检测等场景。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券