学习
实践
活动
专区
工具
TVP
写文章

人工智能_5_决策树_随机森林

# 决策树,随机森林 # 决策树结构:if-then # 信息熵: # 例:第一届世界杯32支球队 每个队伍冠军概率1/32 # 可得 log32(程序员认为的log一般都默认是以 概率相同时为log(n) # 信息熵越大表示 几率均等,不确定性大 # 决策树的划分依据:信息增益 (最大值对应的特征即为重要特征) # 当得知一个特征条件之后,减少的信息熵的大小 (构建决策树时 H(青年) = 值看青年的数据集 根据目标值 = - ( (目标值1/所有青年数)log(目标值1/所有青年数)+....) # 即可根据此 生成决策树 API # sklearn.tree.DecisionTreeClassifier(Criterion='gini',max_depth=None,random_state=None) # 决策树分类器 ,"St Louis, MO","B-5","24160 L221","2","female" def decision(): import pandas as pd """ 决策树

31030
  • 广告
    关闭

    热门业务场景教学

    个人网站、项目部署、开发环境、游戏服务器、图床、渲染训练等免费搭建教程,多款云服务器20元起。

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    人工智能算法通俗讲解系列(三):决策树

    今天,我们介绍的机器学习算法叫决策树。 跟之前一样,介绍算法之前先举一个案例,然后看一下如何用算法去解决案例中的问题。 这里的案例跟K临近法那一讲里的案例差不多,有一点变化。 我们把最重要的属性放到决策树最上面的节点。 然后在每个分支上,计算剩余属性中最重要的属性,放到二级节点。以此类推。 ? 下面是一段伪代码,createBranch方法用于创建决策树的分支,它是一个递归的结构。 调用函数createBranch并增加返回结果到分支节点中 } return 分支节点 } } 相关文章: 人工智能算法通俗讲解系列 (一):K临近法 人工智能算法通俗讲解系列(二):逻辑回归 人工智能算法通俗讲解系列(三):决策树

    40210

    从零开始学人工智能-Python·决策树·简介

    决策树是听上去比较厉害且又相对简单的算法,但在实现它的过程中可能会对编程本身有更深的理解、尤其是对递归的利用 我个人的习惯是先说明最终能干什么、然后再来说怎么实现,这样也能避免一些不必要的信息筛选。 其中,每个 Node 最后那个括号里面,箭头前面是特征取值,箭头后面或者是类别、或者是下一个选取的特征的维度 运用 cv2 的话可以画出比较传统的决策树的可视化图,效果大致如下: 其中红色数字标注了该 白色字母代表着对应数据维度特征的取值 比如说如果样本的第 4 维(从 0 开始计数)是 a、l 的话就判为类别 e,是 c、f、m、p、s、y 的话就判为类别 p,是 n 的话就再看样本的第 7 维、以此类推 虽说我这个决策树暂时不支持连续型特征

    35460

    从零开始学人工智能-Python·决策树(三)·节点

    为此,我们不妨先看看我们需要实现什么: 一个 fit 函数,它能够根据输入的数据递归生成一颗决策树 一个 handle_terminate 函数,它在 node 成为 leaf 时调用,用于更新它爸爸和它爸爸的爸爸和 leaf 后、需要做的事情有两个: 只要分别实现它们就好了: 其中 计算该 leaf 属于哪一类 更新它列祖列宗的 leafs 变量 prune 函数 需要指出的是,node 的 prune 函数不是决策树的剪枝算法 、而是会在决策树的剪枝算法中被调用。 以下是实现: 这一章有点长,稍微总结一下: 决策树的生长关键是靠递归。 、但它会在决策树的剪枝算法中被调用 下一章我们就要说说怎么建立一个框架以利用这些 node 来搭建一颗真正的决策树了。

    49960

    从零开始学人工智能-Python·决策树(四)·树

    refer=carefree0910-pyml 这一章就是朴素实现的最后一章了,我们会在这一部分搭建一个比较完整的决策树框架 上一章我们也提过,我们主要还需要做的只有一个:剪枝 同样的,为了简洁(懒), 当然了、这是通过牺牲效率来换取的简洁,好的做法应该是: 找到决策树“从下往上”的次序 依次判断每个 Node 是否应该剪枝 这样做的话算法复杂度会降低不少、但实现起来也会稍微复杂一点。 在 Python · 决策树(零)· 简介 这一章中,我用到了这么两张图: 它们其实都是在另一种剪枝算法下的最终结果。 以上及之前的各章节加总即是一个比较朴素的决策树的所有实现,它有如下功能: 支持任意形式的离散数据、不必将数据预处理成数值形式 支持可视化最终的决策树模型 支持通过准确率来评估模型的好坏 这不算是一个很完善的决策树 接下来(如果有时间的话)我们会继续做如下事情: 利用 np.bincount 来加速我们的算法 让我们的决策树支持输入样本权重和支持连续型特征 将 C4.5 算法整合到这个框架中 (争取)把 CART

    77490

    决策树1:初识决策树

    0x01 决策树的思想 1.1 什么是决策树 决策树是一种常见的机器学习算法,它的思想十分朴素,类似于我们平时利用选择做决策的过程。 1.2 决策树与条件概率 在前面已经从直观上了解决策树,及其构造步骤了。现在从统计学的角度对决策树进行定义能够能好地帮助我们理解模型。 2.2 决策树损失函数 与其他模型相同,决策树学习用损失函数表示这一目标。决策树学习的损失函数通常是正则化的极大似然函数。决策树学习的策略是以损失函数为目标函数的最小化。 3 决策树的构建 决策树通常有三个步骤: 特征选择 决策树的生成 决策树的修剪 决策树学习的算法通常是一个递归地选择最优特征,并根据该特征对训练数据进行分割,使得对各个子数据集有一个最好的分类的过程。 决策树生成和决策树剪枝是个相对的过程,决策树生成旨在得到对于当前子数据集最好的分类效果(局部最优),而决策树剪枝则是考虑全局最优,增强泛化能力。

    61810

    决策树

    https://blog.csdn.net/jxq0816/article/details/82829502 决策树通过生成决策规则来解决分类和回归问题。 但是由于决策树在理论上能无限制地划分节点 前剪枝:在划分节点之前限制决策树的复杂度,通过一些阈值来限制决策树的生长,比如max_depth、min_sample_split等参数。 后剪枝:在决策树构建完成之后,通过剪枝集修改树的结构,降低它的复杂度。 这两种方法相比,前剪枝的实现更加容易,也更加可控,因为在实际应用中应用得更加广泛。 决策树最大的缺点在于模型的最后一步算法过于简单:对于分类问题,只考虑叶子节点里哪个类别占比最大;而对于回归问题,则计算叶子节点内数据的平均值。这导致它在单独使用时,预测效果不理想。 因此在实际中,决策树常常被用来做特征提取,与其他模型联结起来使用。

    31330

    决策树

    因此,我们可用信息增益来进行决策树的划分属性选择,即在上述“决策树学习的基本算法”章节中第6行选择属性a_* = argmax_{a\in A}Gain(D,a).著名的ID3决策树学习算法就是以信息增益为准则来选择划分属性 而后剪枝策略针对欠拟合问题明显要优于预剪枝策略,泛化性能往往也要优于预剪枝策略;但是后剪枝策略的问题在于,其是在决策树生成之后进行的,并且要自底向上地对树中所有非叶节点进行逐一考察,因此其训练时间要远远大于未剪枝决策树和预剪枝决策树 决策树的剪枝往往是通过极小化决策树整体的损失函数(loss function)或代价函数(cost function)来实现。 决策树的生成只考虑通过信息增益(或信息增益比)对训练集的拟合程度。而决策树剪枝则通过优化损失函数还考虑了减小模型复杂度,进而提高其泛化性能。 换言之,决策树生成算法只学习局部的模型,而决策树剪枝算法则关注整体的泛化性能。

    37041

    决策树

    一、 决策树简介 决策树是一种特殊的树形结构,一般由节点和有向边组成。其中,节点表示特征、属性或者一个类。而有向边包含有判断条件。 这就构成了一颗简单的分类决策树。 ? 1.jpg ? 2.jpg 二、 相关知识 请参考周志华《机器学习》第4章:决策树 注意,第75页有一行内容:信息熵的值越小,则样本集合的纯度越高。 此时的决策树为 ? 第一条数据,第5个属性值是2,需要再判断第3个属性,第3个属性的值为4,根据决策树得出的预测分类为1,与实际结果吻合 第二条数据,第5个属性值是1,根据决策树得出的预测分类为0,与实际结果吻合 第三条数据 1,根据决策树得出的预测分类为0,与实际结果吻合 六、 完整代码 (1)DecisionTree.py # 具有两种剪枝功能的简单决策树 # 使用信息熵进行划分,剪枝时采用激进策略(即使剪枝后正确率相同

    74420

    决策树

    决策树学习 决策树是一种用来进行分类和回归的无参有监督学习方法,其目的是创建一种模型,从模型特征中学习简单的决策远着呢,从而预测一个目标变量的值。 ,默认为None,表示所有叶子节点为纯节点 对数据集构造决策树,首先生成DecisionTreeClassifier类的一个实例(如clf),然后使用该实例调用fit()方法进行训练。 对训练好的决策树模型,可以使用predict()方法对新的样本进行预测。 sklearn.tree模块提供了训练的决策树模型的文本描述输出方法export_graphviz(),如果要查看训练的决策树模型参数,可以使用该方法,其格式为: sklearn.tree.export_graphviz #例8-3 构造打篮球的决策树 import numpy as np import pandas as pd #读数据文件 PlayBasketball = pd.read_csv('D:/my_python

    15020

    决策树

    简介 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法 由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。 决策树学习通常包括 3 个步骤: 特征选择 决策树的生成 决策树的修剪 1.1 决策树场景 场景一:二十个问题 有一个叫 “二十个问题” 的游戏,游戏规则很简单:参与游戏的一方在脑海中想某个事物,其他参与者向他提问 1.2 定义 分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点(node)和有向边(directed edge)组成。 构造决策树是很耗时的任务,即使很小的数据集也要花费几秒。如果用创建好的决策树解决分类问题就可以很快完成。

    980190

    决策树

    决策树(decision tree)是一类常见的机器学习方法。以二分类任务为例,我们希望从给定训练数据集学得一个模型用以对新示例进行分类,这个把样本分类的任务,可看作对“当前样本属于正类吗?” 顾名思义,决策树是基于树结构来进行决策的,这恰是人类在面临决策问题时的一种很自然的处理机制。例如,我们要对“这是好瓜吗?” 一般的,一个决策树包含一个根节点、若干个内部节点和若干个叶节点;叶节点对应于决策结果,其他每个节点则对应于一个属性测试;每个节点包含的样本集合根据属性测试的结果被划分到子节点中;根节点包含样本全集。 决策树学习的目的是为了产生一颗泛化能力强,即处理未见示例能力强的决策树,其基本流程遵循简单直观的“分而治之”策略,算法如下所示, 输入:训练集 属性集 过程:函数 生成节点node. if 显然,决策树的生成是一个递归过程,在决策树基本算法中,有三种情形会导致递归返回:当节点包含的样本全属于同一类别,无需划分当前属性集为空,或是所有样本在所有属性上取值相同,无法划分当前划分节点包含的样本集合为空

    33320

    py 决策树

    举个简单的例子,当我们预测一个孩子的身高的时候,决策树的第一层可能是这个孩子的性别。男生走左边的树进行进一步预测,女生则走右边的树。这就说明性别对身高有很强的影响。 适用情景:因为它能够生成清晰的基于特征(feature)选择不同预测结果的树状结构,数据分析师希望更好的理解手上的数据的时候往往可以使用决策树。同时它也是相对容易被攻击的分类器。 因为决策树最终在底层判断是基于单个条件的,攻击者往往只需要改变很少的特征就可以逃过监测。受限于它的简单性,决策树更大的用处是作为一些更有用的算法的基石。 决策树算法 ID3是由Ross Quinlan在1985年建立的。这个方法建立多路决策树,并找到最大的信息增益。当树长到最大的尺寸,经常应用剪枝来提高决策树对未知数据的一般化。 CART使用特征和阈值在每个节点获得最大的信息增益来构建决策树

    16930

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • TI-ONE 训练平台

      TI-ONE 训练平台

      智能钛机器学习平台是为 AI 工程师打造的一站式机器学习服务平台,为用户提供从数据预处理、模型构建、模型训练、模型评估到模型服务的全流程开发支持。智能钛机器学习平台内置丰富的算法组件,支持多种算法框架,满足多种AI应用场景的需求。自动化建模(AutoML)的支持与拖拽式任务流设计让 AI 初学者也能轻松上手。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券