文章目录 弱人工智能(Weak AI) 弱人工智能也称限制领域人工智能(Narrow AI)或应用型人工智能(Applied AI),指的是专注于且只能解决特定领域问题的人工智能。 例如:AlphaGo、Siri、FaceID 等 扩展阅读: Weak AI ——Wikipedia Weak AI——Investopedia 强人工智能(Strong AI) 又称通用人工智能(Artificial General Intelligence)或完全人工智能(Full AI),指的是可以胜任人类所有工作的人工智能。 强人工智能具备以下能力: 存在不确定性因素时进行推理,使用策略,解决问题,制定决策的能力 知识表示的能力,包括常识性知识的表示能力 规划能力 学习能力 使用自然语言进行交流沟通的能力 将上述能力整合起来实现既定目标的能力 ——Stackexchange 超人工智能(Super Intelligence,缩写 ASI) 假设计算机程序通过不断发展,可以比世界上最聪明,最有天赋的人类还聪明,那么,由此产生的人工智能系统就可以被称为超人工智能
1 浅谈人工智能 1.1 人工智能的概述 人工智能(Artificial Intelligence),英文缩写为AI。 它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器, 人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。 人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。 ? 1.2 人工智能的应用领域 随着智能家电、穿戴设备、智能机器人等产物的出现和普及,人工智能技术已经进入到生活的各个领域,引发越来越多的关注。 ?
代金券、腾讯视频VIP、QQ音乐VIP、QB、公仔等奖励等你来拿!
来源:AI前线 本文长度为4000字,建议阅读8分钟 随着 AI 技术的发展以及部分滥用,这句话也被应用在了人工智能上,一场新的军备竞赛开始了:人工智能 vs 人工智能。 随着 AI 技术的发展以及部分滥用,这句话也被应用在了人工智能上,一场新的军备竞赛开始了:人工智能 vs 人工智能。 然而不幸的是,网络罪犯同样也利用人工智能创建自己的合成身份,产生的结果也足够真实,足以愚弄发现异常行为的人工智能。 这场人工智能之战——也是打击网络安全欺诈者,正在假新闻、假视频和假音频的战壕中展开。 就这样,一场新的军备竞赛开始了:人工智能 vs 人工智能。 Jupiter Research 的 Steffen Sorrell 表示,合成身份是信用卡欺诈“容易实现的目标”。 ,从手动“刷卡”到用人工智能创建合成身份。
作者:武博士、宋知达、袁雪瑶、聂文韬 本节我们会以生动有趣的漫画来介绍关于人工智能(AI)相关的故事,你将会学习到: 人工智能的基本概念 1.1 啥是人工智能 ? 究竟啥是人工之智能? 接下来,我会带大家一一解惑。 1.1.1 人的智慧和人工智能 究竟什么是人工智能,什么是AI,接下来,由我为大家解答。 媒体上几乎每天都有AI和人工智能的词汇,总给人一种深奥神秘的感觉。人工智能顾名思义就是人类制造的智慧,英文叫Artificial Intelligence(AI),所以人工智能=AI。 人工智能必须依赖人类,将人类通过鼻子、眼睛、嘴巴、皮肤...获得的外界资讯,以某种形式”输入“到人工智能,人工智能才可以加工和处理这些信息。 具体输入方式我们未来讨论。 除了这部电影之外,《黑客帝国》、《终结者》、《全面进化》等描述人工智能的电影中,大多提到人工智能会威胁到人类生活,而不是给人类带来幸福,这让很多人谈到人工智能都会感到恐慌。
作者:武博士、宋知达、袁雪瑶、聂文韬 本节我们会以生动有趣的漫画来介绍关于人工智能(AI)相关的故事,你将会学习到: 人工智能的历史 1.2 人工智能的诞生 人工智能是最近才有的吗? 其实人工智能很早就有了,都快63岁了呢。 让我们进入历史的长河,一起沿着时间的足迹探究人工智能。 对于人工智能的研究者来说,这个会议是一场划时代的会议,会议将“像人一样思考的计算机”称为“人工智能”,于是“人工智能”这个词,诞生了! ? 20世纪70年代末成了人工智能的寒冬。 1.2.3 第二次人工智能浪潮 在第一次AI浪潮中,人工智能无法为疾病治疗等人类实际问题做出贡献,使相关研究进入严冬。 从人工智能诞生到现在的历史,可以整理为下图: ? 当我们介绍人工智能浪潮的时候,总会有人问“第三次人工智能浪潮”会很快结束吗?
“吴文俊人工智能科学技术奖”由中国人工智能学会2011年发起主办,得到中国智能科学研究的开拓者和领军人、首届国家最高科学技术奖获得者、中国科学院院士、中国人工智能学会名誉理事长吴文俊的支持,是中国历史上第一次以 1 吴文俊人工智能最高成就奖 2021年吴文俊人工智能最高成就奖由潘云鹤(中国工程院院士)院士获得! 潘院士长期从事计算机图形学、人工智能、CAD和工业设计的研究,是中国智能CAD和计算机美术领域的开拓者之一。 他于1979年研究的我国首项智能CAD“智能模拟彩色图案创作系统”,创造性地解决了图案构图、色彩和描绘等知识表达。 提倡的知识、能力、素质并重的育才模式已在浙大推广。 2 吴文俊人工智能杰出贡献奖 2021年吴文俊人工智能杰出贡献奖由陈俊龙、胡德文、田奇三人分别获得。 陈俊龙 陈俊龙(C. L.
【新智元导读】北京大学第一医院前列腺癌MR资料库训练的智能辅助诊断系统,运用了人工神经网络的技术,从 MR 图像数据中挖掘出有用信息,让计算机可以从中“学到”肿瘤的影像表现。 虽然PI-RADS 有图像阅读和报告的建议,但对mpMRI 的解读仍然不能让人满意(Muller等,2015;Schimmöller等,2013)。 在这一研究中,研究人员验证了基于 DWI 和 ADC 图的 CAD 系统,并评估了其在 PCa 识别中的性能。 目前的研究是人工神经网络(ANN)检测前列腺癌的一系列验证测试之一,与研究者前一次的研究共享相同的算法(Zhao 等,2015)。 结果 研究共纳入71 例患者。 与经验丰富的放射科医师给出的 DWI 评分相比,CAD 系统的诊断效率更高。这一启发性的结果表明,CAD 系统可能是优化前列腺癌诊断现有常规临床工作流程的有前景的技术,能够使其更可靠、可重现。
维图PDMS切图软件WT-DRAW 快捷高效一键出图 智能图纸 PDMS属性完整传递到CAD二维图纸中,实现智能图纸,可在后期深度加工图 纸 快速出图 自动批量出图,无需人工干预。 利用专利技术做到一键出图,批量出图,可提 高出图效率95%以上 专利技术 尺寸标注和标签是我们出图的主要工作,自动出图的关键技术在于计算机如何 自动处理文字和几何尺寸不重叠和规则排布 CAD图纸 不依赖 AutoCAD软件输出DWG图纸,输出图纸和CAD风格完全兼容。
在智慧建筑项目中会接触到一些AI相关的功能。人脸识别是其中最常用的算法,基本是每个项目标配。今天就从人脸识别入手谈谈AI在实际项目中的使用情况。 比如严格按照五官长相来识别人脸,准确率会上升,但召回率可能会下降。(胡子邋遢没洗头发的唐老鸭会被排除) 相反如果放宽识别的条件,召回率可能会上升,而准确率对应的会不那么精确。 (没洗头发的唐老鸭被识别了,但跟唐老鸭长得相似的小黄鸭也被放行了) 二 行业冲突 客户对AI的期待与目前AI能达到的能力存在一定偏差。 聚个例子,有个项目中给客户安装人脸识别门禁机,放在客户公司门口,但因为是在办公楼内,光照条件不是很好,识别效果不如人意。 训练成本的窘境。 接着上面的例子,人工智能的杀手锏说到底还是训练,打标签。 同个算法在不同的数据集下表现很可能有差异。比如化妆女性,阿拉伯人,这些准确率都是要靠海量的样本数度学习堆起来的。那么问题来了,能不能为客户在特定的环境训练算法?技术上是可以,但成本谁来承担。
全书共分为6个章节,6个主题: 人工智能现状 人工智能发展历程 人工智能对人类有威胁吗 人工智能目前的典型应用场景 人工智能带来的创新创业机遇 人工智能时代教育与个人发展 用第一章中提到的Primsa软件 人工智能会威胁到人类吗 先科普三个概念: 弱人工智能 也称限制领域人工智能或应用型人工智能,指的是专注于且只能解决特定领域问题的人工智能,也是当前人工智能所处的阶段。 强人工智能 又称通用型人工智能或完全人工智能,指的是可以胜任人类所有工作的人工智能。 超人工智能 计算机程序通过不断发展,可以比世界上最聪明、最有天赋的人类还聪明,那么,由此产生的人工智能系统就可以被称为超人工智能。 ;而在这之后一个半小时,这个强人工智能变成了超人工智能,智能达到了普通人类的17万倍。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。 人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。 人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。 人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
今天来谈谈人工智能的研究工作中所做的一些基本的抽象。 一、智能体的概念 人工智能研究的对象称为智能体(Agent),其他的外部条件划归为环境。 ? 智能体通过感知获取环境信息并通过执行器和环境交互,举个例子,机器人的摄像头是他的感知器,马达是他的执行器。 感知,是关于时间的输入序列,对应的会有一个输出的执行动作。 智能体做出什么样的反应取决于输入和输出之间的映射关系函数,这个函数就是智能体研究的核心。 编写出智能体的程序则具体实现这个数学意义上的函数。 二、智能体的性能衡量 我们研究智能体是要他能做正确的事,因此需要有一个标准去衡量他的表现,一个合理的智能体会最大化这个期望的标准。 总结,人工智能的研究的期望是实现一个,在给定的每个可能的感知序列下,能做出让期望的性能最大化的行动的理性的智能体。
人工智能一直以来是大热,智能制造又是新兴的关键词,说到智能制造就能想到人工智能,那么两者到底是一样的吗? 说到人工智能,我们并不陌生,机器人和阿尔法狗都深入人心,大多数人的理解是有着人的思维,像人一样去完成各种操作,然而真正的人工智能不止如此,它的应用领域十分广泛,小到一台手机,大到一个工厂的重型设备这些都是人工智能的产物 人工智能是计算机科学的一个分支。 目前,“互联网+”和“人工智能+”已成为制造业转型升级的主攻方向,智能制造是设备等一系列对象在互联网、大数据、人工智能等技术的支持下,满足人类的需求而产生的。 所以人工智能和智能制造并不能混为一体,智能制造算是人工智能和众多技术融合发展的结果! 忽米网——让工业更有智慧
这里芒果看到的是:目前而言无论是自动化测试还是人工智能AI测试,其本质不过是先写一段代码,然后去测试另一段代码的工作,对于功能的验证是一个非黑即白的结果;但是由于现在业务的复杂性,再加上用户对于产品的易用性 、满意度的要求根本不是可以明确规范的事;我们的软件测试工作是一份创造性极强的工作,自动化orAI测试是不可能完全做到代替我们人工的。 我们能做的,就是利用人工智能AI、利用自动化技术等,帮我们解放人力,提高工作效率,管你是人工智能AI还是人工智障BI,只要能帮我们搞定测试大事就是好样的。
去年的AI 人工智能风起云涌的2017匆匆而过。在这一年里,大家共同经历了很多: ? AlphaGo,Alpha Zero等一些列棋牌程序狂虐人类高手; 自动驾驶商业企业全面开花,e.g. 仅百度系自动驾驶初创企业,融资规模在千万美元量级以上的,就已经不下十家; 深度学习狂热席卷世界…… AI的伴生趋势 在过去的5-10年中,人工智能,AI,从一个冷僻的计算机研究领域成为吸纳世界热钱的黑洞 万物互联; 计算能力的巨大提升和计算资源的日益廉价; 数据正在成为新的战略资源; 机器学习/深度学习正在成为新的动力引擎。 今年的AI 在接下来的一年里,AI又将去向何方?我们且先做个推测: ? 大企业对于AI学术领军人物的追捧还会持续一段时间,但逐步会将重点转移到AI对业务的实际支持上。 AI落地点将进一步明确,并开始涌现出确实能为用户提供良好体验的产品。 ? API/SDK; 聊天机器人开发平台等…… “傻瓜式”工具,使得更多的中小企业和个人可以结合通用技术和自身数据,开发个性化应用。
现在大家热火朝天构建的所谓人工智能系统,不过都是概率系统,而非真正的智能系统。 你们都跑偏了(Have it all Wrong)。这位教授最后怼道。 实话实说,初次看到这新闻,也许感觉挺新鲜,现在人工智能大行其道,大公司恨不得都在手臂上纹一条“ALL IN AI”的纹身,深度学习差不多就是“未来”的同义词,没想到居然还有教授敢跳反。 其实吧,学术界怒怼人工智能不智能早已怼出了有着历史悠久的传统,从人工智能诞生的哪一天起,隔一段就有大大小小的学者教授跳出来当头棒喝,都觉得我们现在跑偏了。 当然,他还balabala说了很多,要我概括就一句话:你们是数据邪教,搞出来的人工智能是人工不是智能。 有人就有江湖,人工智能也不例外,从很早看开始就分成了推理派和统计派。 推理派主张分得清因果的才算智能,统计派则有点拿来主义,只要结果有用就算智能。 这样不容易说清楚,不妨举个例子。
一站式医学人工智能开放创新服务平台,涵盖数据管理、标注,算法训练、评测、应用全流程
扫码关注云+社区
领取腾讯云代金券