展开

关键词

时代,GPU要火?

”——已经不再是科幻电影里的事,Google、Microsoft、斯坦福大学……那些你所想象到的知名企业、大学几乎都已启动这一研究。 今年“两会”期间,李彦宏的提案就是“中国大脑”,其实质就是通过来推动中国整体创新水平的提高。 在通往的路上,“深度学习”是核心,它也是机器学习最有前景的一个分支,指的是计算机使用神经网络自主学习的过程。 那么问题来了,这么好,深度学习前景这么美,怎么去实现?两个核心:首先是足够强大的数据库,其次是足够强大的计算力。 2011年以前,业界进行深度计算主要基于CPU来实现,直到斯坦福大学通过GPU进行了颠覆性的比较后,GPU在深度计算方面的强大性才被认识——Google数据中心需要1000台CPU服务器完成的作,斯坦福实验室仅用

60890

IDC发布2018年中国报告:GPU服务器FPGA销售额暴增

互联网仍然是GPU服务器规模最大市场,政府市场增长迅猛 IDC报告指出,互联网仍然是GPU服务器市场上最大的垂直领域,但传统行业的终端用户开始采用解决方案并部署GPU服务器。 2021年中国50%的IT操作将被AI取代 另一边,《IDC全球大数据及分析消费指南》和《IDC全球认知/消费指南》,也给出了中国及大数据市场的十大预测: 预测1:到2023年,使用和高级分析技术的商业化产品将导致咨询服务占项目总支出的 预测8:到2021年,中国数据市场将提供少量实际数据和大量模拟数据用于模型训练,这使得新的模型的开发速度提高一倍。 预测10:到2021年,中国或自动化分析将取代50%的IT操作,节省20%以上的运营成本。 当前,那些IT投资规模大、IT发展水平高、拥有较多领军企业的省市在计算力投资方面也走在了前面;未来,那些有清晰的发展战略、拥有更多才储备和产业规划投资的省市将有更大的发展潜力。

87680
  • 广告
    关闭

    什么是世界上最好的编程语言?丨云托管征文活动

    代金券、腾讯视频VIP、QQ音乐VIP、QB、公仔等奖励等你来拿!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    、强、超

    文章目录 弱(Weak AI) 弱也称限制领域(Narrow AI)或应用型(Applied AI),指的是专注于且只解决特定领域问题的。 例如:AlphaGo、Siri、FaceID 等 扩展阅读: Weak AI ——Wikipedia Weak AI——Investopedia 强(Strong AI) 又称通用(Artificial General Intelligence)或完全(Full AI),指的是可以胜任类所有作的。 强具备以下力: 存在不确定性因素时进行推理,使用策略,解决问题,制定决策的力 知识表示的力,包括常识性知识的表示力 规划力 学习力 使用自然语言进行交流沟通的力 将上述力整合起来实现既定目标的力 ——Stackexchange 超(Super Intelligence,缩写 ASI) 假设计算机程序通过不断发展,可以比世界上最聪明,最有天赋的类还聪明,那么,由此产生的系统就可以被称为超

    2K20

    -浅谈

    1 浅谈 1.1 的概述 (Artificial Intelligence),英文缩写为AI。 它是研究、开发用于模拟、延伸和扩展的理论、方法、技术及应用系统的一门新的技术科学 是计算机科学的一个分支,它企图了解的实质,并生产出一种新的相似的方式做出反应的机器, 从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来带来的科技产品,将会是慧的“容器”。可以对的意识、思维的信息过程的模拟。 不是,但那样思考、也可超过。 ? 1.2 的应用领域 随着家电、穿戴设备、机器等产物的出现和普及,技术已经进入到生活的各个领域,引发越来越多的关注。 ?

    75720

    打击

    来源:AI前线 本文长度为4000字,建议阅读8分钟 随着 AI 技术的发展以及部分滥用,这句话也被应用在了上,一场新的军备竞赛开始了: vs 。 随着 AI 技术的发展以及部分滥用,这句话也被应用在了上,一场新的军备竞赛开始了: vs 。 然而不幸的是,网络罪犯同样也利用创建自己的合成身份,产生的结果也足够真实,足以愚弄发现异常行为的。 这场之战——也是打击网络安全欺诈者,正在假新闻、假视频和假音频的战壕中展开。 就这样,一场新的军备竞赛开始了: vs 。 Jupiter Research 的 Steffen Sorrell 表示,合成身份是信用卡欺诈“容易实现的目标”。 ,从手动“刷卡”到用创建合成身份。

    37230

    漫画简史

    作者:武博士、宋知达、袁雪瑶、聂文韬 本节我们会以生动有趣的漫画来介绍关于(AI)相关的故事,你将会学习到: 的历史 1.2 的诞生 是最近才有的吗? 其实很早就有了,都快63岁了呢。 让我们进入历史的长河,一起沿着时间的足迹探究。 对于的研究者来说,这个会议是一场划时代的会议,会议将“像一样思考的计算机”称为“”,于是“”这个词,诞生了! ? 20世纪70年代末成了的寒冬。 1.2.3 第二次浪潮 在第一次AI浪潮中,无法为疾病治疗等类实际问题做出贡献,使相关研究进入严冬。 从诞生到现在的历史,可以整理为下图: ? 当我们介绍浪潮的时候,总会有问“第三次浪潮”会很快结束吗?

    60420

    漫画:啥是

    作者:武博士、宋知达、袁雪瑶、聂文韬 本节我们会以生动有趣的漫画来介绍关于(AI)相关的故事,你将会学习到: 的基本概念 1.1 啥是 ? 究竟啥是? 接下来,我会带大家一一解惑。 1.1.1 慧和 究竟什么是,什么是AI,接下来,由我为大家解答。 媒体上几乎每天都有AI和的词汇,总给一种深奥神秘的感觉。顾名思义就是类制造的慧,英文叫Artificial Intelligence(AI),所以=AI。 必须依赖类,将类通过鼻子、眼睛、嘴巴、皮肤...获得的外界资讯,以某种形式”输入“到才可以加和处理这些信息。 具体输入方式我们未来讨论。 除了这部电影之外,《黑客帝国》、《终结者》、《全面进化》等描述的电影中,大多提到会威胁到类生活,而不是给类带来幸福,这让很多谈到都会感到恐慌。

    59020

    全书共分为6个章节,6个主题: 现状 发展历程 类有威胁吗 目前的典型应用场景 带来的创新创业机遇 时代教育与个发展 用第一章中提到的Primsa软件 会威胁到类吗 先科普三个概念: 弱 也称限制领域或应用型,指的是专注于且只解决特定领域问题的,也是当前所处的阶段。 强 又称通用型或完全,指的是可以胜任类所有作的。 超 计算机程序通过不断发展,可以比世界上最聪明、最有天赋的类还聪明,那么,由此产生的系统就可以被称为超。 ;而在这之后一个半小时,这个强变成了超达到了普通类的17万倍。

    1.3K30

    慧建筑项目中会接触到一些AI相关的功脸识别是其中最常用的算法,基本是每个项目标配。今天就从脸识别入手谈谈AI在实际项目中的使用情况。 比如严格按照五官长相来识别脸,准确率会上升,但召回率可会下降。(胡子邋遢没洗头发的唐老鸭会被排除) 相反如果放宽识别的条件,召回率可会上升,而准确率对应的会不那么精确。 (没洗头发的唐老鸭被识别了,但跟唐老鸭长得相似的小黄鸭也被放行了) 二 行业冲突 客户对AI的期待与目前AI达到的力存在一定偏差。 聚个例子,有个项目中给客户安装脸识别门禁机,放在客户公司门口,但因为是在办公楼内,光照条件不是很好,识别效果不如意。 训练成本的窘境。 接着上面的例子,的杀手锏说到底还是训练,打标签。 同个算法在不同的数据集下表现很可有差异。比如化妆女性,阿拉伯,这些准确率都是要靠海量的样本数度学习堆起来的。那么问题来了,为客户在特定的环境训练算法?技术上是可以,但成本谁来承担。

    57940

    (Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展的理论、方法、技术及应用系统的一门新的技术科学。 是计算机科学的一个分支,它企图了解的实质,并生产出一种新的相似的方式做出反应的机器,该领域的研究包括机器、语言识别、图像识别、自然语言处理和专家系统等。 从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来带来的科技产品,将会是慧的“容器”。可以对的意识、思维的信息过程的模拟。 不是,但那样思考、也可超过是一门极富挑战性的科学,从事这项作的必须懂得计算机知识,心理学和哲学。 是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,研究的一个主要目标是使机器够胜任一些通常需要完成的复杂作。

    16410

    新型 GPU 芯片:可在手机跑程序

    科技日报北京2月3日电 (记者刘园园)你想让自己的手机变成可以随时随地执行计算的“神器”吗?一种新型图形处理器(GPU)芯片让这个梦想走进了现实。 据麻省理学院(MIT)官网消息,在本周的国际固态电路会议上,该校科研员展示了一种新型的专门用于运行神经网络的GPU芯片。 MIT研发的这种新型芯片被命名为“Eyeriss”,它的运行效率是普通手机GPU的10倍,因此可以直接在移动设备上执行强大的算法,而不需要将数据上传到互联网进行处理。 手机GPU一般拥有200多个核或者处理单元。Eyeriss高效率运行的关键之处在于将处理单元与内存条交换数据的频率降到最低,因为这一过程会消耗大量时间和量。 CNN算是深度神经网络的前身,与近年来一些技术的重大进展不无关系。 Eyeriss芯片高效率运行的另一个秘诀在于,它有一个可以向各个处理单元分配任务的特殊电路。

    52080

    今天来谈谈的研究作中所做的一些基本的抽象。 一、体的概念 研究的对象称为体(Agent),其他的外部条件划归为环境。 ? 体通过感知获取环境信息并通过执行器和环境交互,举个例子,机器的摄像头是他的感知器,马达是他的执行器。 感知,是关于时间的输入序列,对应的会有一个输出的执行动作。 体做出什么样的反应取决于输入和输出之间的映射关系函数,这个函数就是体研究的核心。 编写出体的程序则具体实现这个数学意义上的函数。 二、体的性衡量 我们研究体是要他做正确的事,因此需要有一个标准去衡量他的表现,一个合理的体会最大化这个期望的标准。 总结,的研究的期望是实现一个,在给定的每个可的感知序列下,做出让期望的性最大化的行动的理性的体。

    74660

    制造一样吗?

    一直以来是大热,制造又是新兴的关键词,说到制造就想到,那么两者到底是一样的吗? 说到,我们并不陌生,机器和阿尔法狗都深入心,大多数的理解是有着的思维,像一样去完成各种操作,然而真正的不止如此,它的应用领域十分广泛,小到一台手机,大到一个厂的重型设备这些都是的产物 是计算机科学的一个分支。 目前,“互联网+”和“+”已成为制造业转型升级的主攻方向,制造是设备等一系列对象在互联网、大数据、等技术的支持下,满足类的需求而产生的。 所以制造并不混为一体,制造算是和众多技术融合发展的结果! 忽米网——让业更有

    29050

    or障?

    这里芒果看到的是:目前而言无论是自动化测试还是AI测试,其本质不过是先写一段代码,然后去测试另一段代码的作,对于功的验证是一个非黑即白的结果;但是由于现在业务的复杂性,再加上用户对于产品的易用性 、满意度的要求根本不是可以明确规范的事;我们的软件测试作是一份创造性极强的作,自动化orAI测试是不可完全做到代替我们的。 我们做的,就是利用AI、利用自动化技术等,帮我们解放力,提高作效率,管你是AI还是障BI,只要帮我们搞定测试大事就是好样的。

    4710

    ·2018

    去年的AI 风起云涌的2017匆匆而过。在这一年里,大家共同经历了很多: ? AlphaGo,Alpha Zero等一些列棋牌程序狂虐类高手; 自动驾驶商业企业全面开花,e.g. 仅百度系自动驾驶初创企业,融资规模在千万美元量级以上的,就已经不下十家; 深度学习狂热席卷世界…… AI的伴生趋势 在过去的5-10年中,,AI,从一个冷僻的计算机研究领域成为吸纳世界热钱的黑洞 万物互联; 计算力的巨大提升和计算资源的日益廉价; 数据正在成为新的战略资源; 机器学习/深度学习正在成为新的动力引擎。 今年的AI 在接下来的一年里,AI又将去向何方?我们且先做个推测: ? 大企业对于AI学术领军物的追捧还会持续一段时间,但逐步会将重点转移到AI对业务的实际支持上。 AI落地点将进一步明确,并开始涌现出确实为用户提供良好体验的产品。 ? API/SDK; 聊天机器开发平台等…… “傻瓜式”具,使得更多的中小企业和个可以结合通用技术和自身数据,开发个性化应用。

    440100

    现在大家热火朝天构建的所谓系统,不过都是概率系统,而非真正的系统。 你们都跑偏了(Have it all Wrong)。这位教授最后怼道。 实话实说,初次看到这新闻,也许感觉挺新鲜,现在大行其道,大公司恨不得都在手臂上纹一条“ALL IN AI”的纹身,深度学习差不多就是“未来”的同义词,没想到居然还有教授敢跳反。 其实吧,学术界怒怼早已怼出了有着历史悠久的传统,从诞生的哪一天起,隔一段就有大大小小的学者教授跳出来当头棒喝,都觉得我们现在跑偏了。 当然,他还balabala说了很多,要我概括就一句话:你们是数据邪教,搞出来的不是。 有就有江湖,也不例外,从很早看开始就分成了推理派和统计派。 推理派主张分得清因果的才算,统计派则有点拿来主义,只要结果有用就算。 这样不容易说清楚,不妨举个例子。

    6010

    未来的将不再是“

    【新元导读】不远的未来,将无处不在,即使是类专家也无法分辨,不理解。这对意味着什么,对又意味着什么呢? (文/Jarno M. 这对类的动性意味着什么,对的未来意味着什么呢? 正脱离类掌控 不远的未来,对类来说将普遍变得不可触摸、不可分辨和难以理解。 由此,我们将不再感知到其的“性”。 第三,也是最重要的,当的后果和技术变化的细节已经超出了类的感知和理解力的时候,将逃脱类的监控。 中的“”二字正在失去其意义。 今天,正在塑造,而也已开始越来越多地塑造类的。当系统的影响增加之后,将有更多的需要够理解的运作和后果。 当类和系统之间够更加完美无缝地缠绕在一起的时候,之间的边界或许也会消融。“”一词中的“”二字将会消失,而的概念也将变得无关紧要和过时。

    39380

    未来的:只有‘’,没有‘

    实际上,随着技术的影响越来越大,们越来越无法理解对我们作和生活方方面面所产生的影响。这对于政府机构和的未来意味着什么? 摆脱 在不久的将来,你将看不到,感觉不到,而且你也将无法理解。 首先,并不是一定需要一个有形的实体。 目前发展的趋势下,即便是资深的专家也无法跟上发展的步伐。 这意味着技术不久就会超越克拉克第三法则,该法则认为“任何非常先进的技术,初看都与魔法无异”。 而且,当一套够自我学习,自我调整的系统以自身掌控的速度演化提升的时候,对于类来说基本上就无法理解了。最终,系统将会成为领域的专家,够比类更好地预测的未来。 在系统中,“”正在失去其应有的意义。 今天,正在塑造,以后将逐渐塑造。当系统的影响越来越大时,更多的需要理解其运作原理和影响。

    1.8K40

    关注+ 金融添双翼

    ▌金融正变得更场景化、高频化和个性化 ---- ---- 易观咨询此前发布的《理财市场专题分析》报告预测,到2020年,中国理财规模将达到5.22万亿元。 而在我国,技术已经初步渗入到金融科技的各个领域,从客服到反欺诈,从商家营销到贷款模型,从财经资讯推送到投顾,从车险图像定损到保险对话机器等。 不但互联网公司发力,银行业也利用改造传统的信贷流程和理财模式。 家家的时代,什么样的技术运用才算得上是真正的“”? 国际协会主席、微众银行独立董事杨强说,的引入使得银行服务发生本质的变化,更场景化、高频化和个性化。 杨强说,现在没有实现的主要原因在于数据没有连通,以及技术的应用还不到位。 大数据是实现的基础,对于精确数据的需求会越来越强烈,驱动着开放平台的建立。

    58950

    何谓“”?如何做到“强”?

    【导读】本文是程师Narasimha Prasanna HN撰写的技术博文,主要介绍的概念,当前的水平,以及什么是强,当前实现强的方向。 我们可以从中看到当前我们处于的什么阶段,我们推进的可的方向。 ? What is Artificial General Intelligence? 什么是? ---- ---- 是计算机科学(或科学)的一个分支,它创建系统。 系统就是像类一样拥有的系统。 科学并不新鲜,术语在古希腊和埃及的手稿中已经提到。 那么,这个词已经在娱乐领域流行起来,我们可以看到很多基于超级概念的电影。但是我们今天看到的系统与所谓的“超级”系统并不匹配。 他们的作代表了有史以来第一位够在不需要任何为干预的情况下不断调整行为的通用体,这是寻求强AI的主要技术步骤。

    92060

    相关产品

    • GPU 云服务器

      GPU 云服务器

      腾讯GPU 云服务器是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于深度学习训练、科学计算、图形图像处理、视频编解码等场景。

    相关资讯

    热门标签

    扫码关注云+社区

    领取腾讯云代金券