关于用户画像的概念,数据相关从业人员应该都知道。用户画像的应用场景很广泛,比如精细化运营、数据分析与挖掘、精准营销、搜索和广告的个性化定向推送等。 用户画像的分析核心一个是对用户建模打标签,关于这,之前在内部交流群分享了一份个人学习的资料,大家都觉得真香,今天把全部内容共享出来供大家自行下载阅读。 主要目录: 1、用户画像应用场景 2、产品层面的宏观分析维度 3、用户画像标签类型 4、用户画像项目开发流程 5、数据仓库介绍 6、用户画像数据质量管理 7、常见需要开发的用户画像相关模型 8、用户行为标签表实际开发案例
开发画像后的标签数据,如果只是“躺在”数据仓库中,并不能发挥更大的业务价值。只有将画像数据产品化后才能更便于业务方使用。 本文主要介绍用户画像产品化后主要可能涵盖到的功能模块,以及这些功能模块的应用场景。 01 即时查询 即时查询功能主要面向数据分析师。 将用户画像相关的标签表、用户特征库相关的表开放出来供数据分析师查询。 Hive存储的相关标签表,包括userid和cookieid两个维度。 图13 对比分析两个人群特征 本文介绍了用户画像产品化主要涵盖的功能模块以及这些模块的应用场景。用户画像产品化是把数据应用到业务服务中的一个重要出口,业务人员熟知业务,但对数据不了解。 本文摘编于《用户画像:方法论与工程化解决方案》,经出版方授权发布。
2核2G云服务器首年95元,GPU云服务器低至9.93元/天,还有更多云产品低至0.1折…
关于用户画像的概念,数据相关从业人员应该都知道。用户画像的应用场景很广泛,比如精细化运营、数据分析与挖掘、精准营销、搜索和广告的个性化定向推送等。 用户画像的分析核心一个是对用户建模打标签,关于这,之前宝器在内部交流群分享了一份个人学习的资料,大家都觉得真香,今天把全部内容共享出来供大家自行下载阅读。 主要目录: 1、用户画像应用场景 2、产品层面的宏观分析维度 3、用户画像标签类型 4、用户画像项目开发流程 5、数据仓库介绍 6、用户画像数据质量管理 7、常见需要开发的用户画像相关模型 8、用户行为标签表实际开发案例
","id":15,"tablename":"user_info","account":"abcd","age":24,"email":"981456@qq.com","status":0} 创建用户画像 reduce.addSink(new CarrierAnalySink()); env.execute("portrait carrier"); } } 创建用户画像会员分类标签 ); reduce.addSink(new MemberAnalySink()); env.execute("portrait member"); } } 用户画像行为特征 这里我们会分析用户的几个行为,并进行画像 浏览商品行为:频道id、商品id、商品类别id、浏览时间、停留时间、用户id、终端类别(1、PC端,2、微信小程序,3、app)、deviceId。 创建用户画像商品类别偏好标签 创建一个商品类型标签实体类 @Data public class ProductTypeLabel { private Long userid; private
01 什么是健康码画像? 健康码画像让普通大众理解了数据,其实在实际的应用中还有很多针对特定场景的画像,如用户画像、产品画像、业务经营画像等,下面以用户画像为例讲解。 02 什么是用户画像? 、场景等描述,形成一个用户画像原型。 通过这个用户画像,从而对这个人有了一个整体的认识,一个完整的人物画像已经呈现在了你的脑海里。当标签被描述得越多,用户画像就越清晰。 用户画像的基本要素包括:基本属性、动态属性、消费属性、行为属性和心理属性等。 基本属性是勾勒用户画像的基础:性别、年龄、学历、角色、收入、地域、婚姻等。
用户画像是指用户的进行标签化、信息结构化。 构成用户画像的基本元素通常有:姓名、照片、个人信息、经济状况、工作信息、计算机互联网背景。 用来丰富用户画像的元素有:居住地、工作地点、公司、爱好、家庭生活、朋友圈、性格、个人语录等等。 创建用户画像的方法 ? 用户画像的作用 精准营销,分析产品潜在用户,针对特定群体利用短信邮件等方式进行营销; 用户统计,比如中国大学购买书籍人数 TOP10,全国分城市奶爸指数; 数据挖掘,构建智能推荐系统,利用关联规则计算
图1-6 用户画像建设项目流程 第一阶段:目标解读 在建立用户画像前,首先需要明确用户画像服务于企业的对象,再根据业务方需求,明确未来产品建设目标和用户画像分析之后的预期效果。 就后文将要介绍的案例而言,需要从用户属性画像、用户行为画像、用户偏好画像、用户群体偏好画像等角度去进行业务建模。 只有业务人员在日常工作中真正应用画像数据、画像产品,才能更好地推动画像标签的迭代优化,带来流量提升和营收增长,产出业绩价值。 图1-8 回收的调研问卷(截图自“问卷星”) 08 小结 本文主要介绍了用户画像的一些基础知识,包括画像的简介、标签类型、整个画像系统的数据架构,开发画像系统主要覆盖的8个模块,以及开发过程中的各阶段关键产出 初步介绍了画像系统的轮廓概貌,帮助读者对于如何设计画像系统、开发周期、画像的应用方式等有宏观的初步的了解。
(5)行业报告&用户研究:通过用户画像分析可以了解行业动态,比如人群消费习惯、消费偏好分析、不同地域品类消费差异分析 根据用户画像的作用可以看出,用户画像的使用场景较多,用户画像可以用来挖掘用户兴趣 三、 用户画像的分类 从画像方法来说,可以分为定性画像、定性+定量画像、定量画像 从应用角度来看,可以分为行为画像、健康画像、企业信用画像、个人信用画像、静态产品画像、 旋转设备画像、社会画像和经济画像等。 八、 用户画像基本步骤[F2] 根据具体业务规则确定用户画像方向后,开展用户画像分析,总体来说,一个用户画像流程包括以下三步。 十二、用户画像困难点、用户画像瓶颈 用户画像困难点主要表现为以下4个方面 资料搜集和数据挖掘 在画像之前需要知道产品的用户特征和用户使用产品的行为等因素,从而从总体上掌握对用户需求需求 创建用户画像不是抽离出典型进行单独标签化的过程
在《4个问题带你了解用户画像》中,我们了解了用户画像的定义、作用及使用注意事项等。 就有用户留言问了:在实际工作中,构建用户画像的方法有哪些?如何构建用户画像呢? 下面我将结合通过案例,带你了解构建用户画像的4个步骤: 用户画像是为业务服务的,因此我们构建画像之前一定要清晰项目背景和业务需求。 用户归类 回顾用户画像的定义:用户画像是目标用户的代表性画像,其中包含了用户属性、场景、痛点和需求等。 实际构建过程中,我们往往无法用一个画像代表所有目标用户。 以上信息归纳总结,就是最终的用户画像: 成就型人格者: 外向型探索家: 剧中人: 客观型行业人员: 画像完成后,可能有朋友要问,做了那么多前期工作,最后就剩下简洁的画像了? 因此提炼画像不是工作的结束,促进画像运用和验证效果也是重要步骤。
image.png 在《4个问题带你了解用户画像》中,我们了解了用户画像的定义、作用及使用注意事项等。 就有用户留言问了:在实际工作中,构建用户画像的方法有哪些?如何构建用户画像呢? 下面我将结合通过案例,带你了解构建用户画像的4个步骤: image.png 用户画像是为业务服务的,因此我们构建画像之前一定要清晰项目背景和业务需求。 用户归类 image.png 回顾用户画像的定义:用户画像是目标用户的代表性画像,其中包含了用户属性、场景、痛点和需求等。 实际构建过程中,我们往往无法用一个画像代表所有目标用户。 其实在画像背后,是丰富的资料库和调研信息。用户画像强调简单易用,但当实际工作中需要例证和具体数据时,我们依旧可以调用其他信息。 4. 验证效果 image.png 我们开篇强调过,用户画像是为业务服务的。因此提炼画像不是工作的结束,促进画像运用和验证效果也是重要步骤。
0x00 前言 视频号分享中【什么是用户画像】的文案,文字版分享给大家~内容虽然短,但是能锻炼在1分钟讲一个概念的能力,如果以后有朋友问你用户画像是什么,你可以用下面1分钟左右的文稿告诉他。 今天要和大家分享的话题是:用户画像。 0x01 画像 那么,什么是用户画像呢?我来举个例子说明: 假设你有一位朋友:他是一名35岁左右的男性,周六日喜欢宅在家里,而且每天点外卖。 那把上面这些标签和在一起,就形成了你朋友的用户画像,看一下,熟悉吗? 0x02 应用 那么有了这些画像之后,有什么用呢?
string 与uid喜好相似的人群,格式为用户编号:相同阅读量,相似用户之间以逗号分隔 sim_num BIGINT 相似人群的人数 update_date string 数据日期 2、基础用户画像存在 MongoDB中 Image [2].png 字段 含义 _id 用户id profile(离线)positive(实时) 用户正画像(喜欢),每个维度以分号间隔,每个子维度以逗号间隔,值格式为key_id :weight,维度含义依次为一级分类、二级分类、关键字、topic、阅读来源 negative 负画像(不喜欢),其他字段的含义与正画像一样 update_time 更新时间 cityCode或city 城市编码 3、相似人群画像也存在MongoDB中 QQ截图20180719095235.png 二、整体思路 由于TESLA集群无法直接操作MongoDB,需要将TDW里面的用户画像数据,通过洛子系统导出至 HDFS,再与MongoDB中原有群画像进行合并。
在数据的基建和应用层面,除了重视数据分析外,也越来越重视数据资产在更多业务场景中的应用,标签画像的建设和应用就是其中一类很常见的需求和期望。 从对业务的价值来说,标签和画像是类似中间层的系统模块,具体来说,数据资产本质上是一些采集、采购所获得的数据源,但企业希望在数据源的基础上,实现资产变现,而且不断扩大资产价值。 很多企业都意识到,这个中间层就是标签画像。 下面主要介绍了企业做标签画像的目的,重点阐述标签和画像的应用场景及应用流程,构建标签和画像体系的实操方法论,最后给出了行业案例。
用户画像 简介 用户画像,作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。 建立用户画像和精准化分析是关键。 用户画像可以使产品的服务对象更加聚焦,更加的专注。 这只是用户画像在电商领域的应用,事实上用户画像已经不知不觉的渗透到了各个领域,在当前最火的抖音,直播等领域,推荐系统在大数据时代到来以后,用户的一切行为都是可以追溯分析的。 步骤 什么是用户画像? 用户画像是根据市场研究和数据,创建的理想中客户虚构的表示。创建用户画像,这将有助于理解现实生活中的目标受众。 用户画像最重要的一个步骤就是对用户标签化,我们要明确要分析用户的各种维度,才能确定如何对用户进行画像。
伴随着对人的了解逐步深入,一个概念悄然而生:用户画像(UserProfile),完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 一、什么是用户画像? 这样一串描述即为用户画像的典型案例。如果用一句话来描述,即:用户信息标签化。 如果用一幅图来展现,即: ? 二、为什么需要用户画像 用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少? 所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。 3.1 数据源分析 构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。 百分点现已全面应用用户画像技术于推荐引擎中,在对某电商客户,针对活动页新访客的应用中,依靠用户画像产生的个性化效果,对比热销榜,推荐效果有显著提升:推荐栏点击率提升27%,订单转化率提升34%。
在《什么的是用户画像》一文中,我们已经知道用户画像对于企业的巨大意义,当然也有着非常大实时难度。那么在用户画像的系统架构中都有哪些难度和重点要考虑的问题呢? 这这些高性能的实时框架成为支撑我们建立实时用户画像的最有力支持。 ? 其实还不着急,在开工之前,需求的明确是无比重要的,针对不同的业务,电商,风控,还是其他行业都有着不同的需求,对于用户画像的要求也不同,那么该如何明确这些需求呢,最重要的就是定义好用户画像的标签体系,这是涉及技术人员 ,产品,运营等岗位共同讨论的结果,也是用户画像的核心所在,下一篇,我们将讨论用户画像的标签体系。 未完待续~ 参考文献 《用户画像:方法论与工程化解决方案》
我们经常可以看到,一个好好的“业务”人才,提拔到了“管理者”的岗位上后便迅速凋谢;我们还可以看到,在现实中数不清的管理得一塌糊涂的“垃圾”企业,其实并不缺乏拥有十年乃至几十年业务经验的“业务高手”。
二、用户画像的目的 用户画像是在解客户需求和消费能力,以及客户信用额度的基础上,寻找潜在产品的目标客户,并利用画像信息为客户开发产品。 提到用户画像,很多厂商都会提到360度用户画像,其实经常360度客户画像是一个广告宣传用语,根本不存数据可以全面描述客户,透彻了解客户。 用户画像一词具有很重的场景因素,不同企业对于用户画像有着不同对理解和需求。举个例子,金融行业和汽车行业对于用户画像需求的信息完全不一样,信息纬度也不同,对画像结果要求也不同。 三、用户画像工作坚持的原则 市场上用户画像的方法很多,许多企业也提供用户画像服务,将用户画像提升到很有逼格一件事。 让用户画像离商业应用更加近一些,体现用户画像的商业价值。
用户画像分类 精确用户属性标签画像: 用户基础属性画像 用户的喜好偏向 用户拓展信息画像 单个信息的集合 概况画像 用户来源画像:我们需要有一个来源分类,并对不同分类打标签,例如:直接访问、搜索引擎、广告营销 、移动APP 用户浏览行为画像:行为标签,分析用户热点区域连接 实时订单画像:不同来源用户的订单画像 订单转化率画像:各个来源客户的访问和最终购买的比例 访客画像群体画像 实时打标签 实时订单种类 流量趋势画像 ) 网络连接画像(不同网络的连接方式运营商) 会员画像 性别画像(性格的占比) 年龄分布画像(按标准年龄段的正态分布) 教育背景画像(教育背景) 职业分布画像(职业背景) 特征分布画像(多标签特征库,购物狂 (用户关键词,影片画像) 播放指标画像(最新的,最热的,播放量) 视频质量画像(用户观看质量,观看时间) 视频相关度画像(每个视频相关视频TOP N) 推荐营销视频画像 用户热点画像 用户金融信誉等级画像 (职称、朋友信用等级) 用户互联网画像(微博、微信) 标准用户画像(用户信用区间等级评定) 移动电信集中监管系统画像 移动电信集中监管系统画像是对用户的通信数据等各种指标进行画像分析 供销存画像 传感器数据分析画像
智能数据分析( IDA)基于安全、低成本、高可靠、可弹性的云端大数据架构,帮助企业客户实现从数据采集、建模、挖掘、效果分析、用户标签画像到自动化营销等全场景的数据服务,快速实现数据驱动业务增长的目标。
扫码关注腾讯云开发者
领取腾讯云代金券