学习
实践
活动
专区
工具
TVP
写文章
  • 广告
    关闭

    新年·上云精选

    热卖云产品年终特惠,2核2G轻量应用服务器7.33元/月起,更多上云必备产品助力您轻松上云

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用户画像

    开发画像后的标签数据,如果只是“躺在”数据仓库中,并不能发挥更大的业务价值。只有将画像数据产品化后才能更便于业务方使用。 本文主要介绍用户画像产品化后主要可能涵盖到的功能模块,以及这些功能模块的应用场景。 01 即时查询 即时查询功能主要面向数据分析师。 将用户画像相关的标签表、用户特征库相关的表开放出来供数据分析师查询。 Hive存储的相关标签表,包括userid和cookieid两个维度。 图13 对比分析两个人群特征 本文介绍了用户画像产品化主要涵盖的功能模块以及这些模块的应用场景。用户画像产品化是把数据应用到业务服务中的一个重要出口,业务人员熟知业务,但对数据不了解。 本文摘编于《用户画像:方法论与工程化解决方案》,经出版方授权发布。

    1.4K30

    用户画像基础

    图1-6 用户画像建设项目流程 第一阶段:目标解读 在建立用户画像前,首先需要明确用户画像服务于企业的对象,再根据业务方需求,明确未来产品建设目标和用户画像分析之后的预期效果。 就后文将要介绍的案例而言,需要从用户属性画像、用户行为画像、用户偏好画像、用户群体偏好画像等角度去进行业务建模。 只有业务人员在日常工作中真正应用画像数据、画像产品,才能更好地推动画像标签的迭代优化,带来流量提升和营收增长,产出业绩价值。 图1-8 回收的调研问卷(截图自“问卷星”) 08 小结 本文主要介绍了用户画像的一些基础知识,包括画像的简介、标签类型、整个画像系统的数据架构,开发画像系统主要覆盖的8个模块,以及开发过程中的各阶段关键产出 初步介绍了画像系统的轮廓概貌,帮助读者对于如何设计画像系统、开发周期、画像的应用方式等有宏观的初步的了解。

    2.1K50

    用户画像总结

    方式:又分为非形式化手段,如使用文字、语言、图像、视频等方式描述人;形式化手段,即使用数据的方式来刻画人物画像。 组织:指的是结构化、非结构化的组织形式。 标准:指的是使用常识、共识、知识体系的渐进过程来刻画人物,认识了解用户。 验证:依据侧重说明了用户画像应该来源事实、经得起推理和检验。 而正中间则是永恒不变的“人物基础属性”。 如果说其他的分类因企业特征而定,那么只有人物特征属性(至于名字叫什么不重要,关键是内涵)是各家企业不能缺失的板块。 所谓人物基础属性指的是:用户客观的属性而非用户自我表达的属性,也就是描述用户真实人口属性的标签。 那么在人物基础属性中的性别,应该标识的是“男性”,但是用户信息标签部分,自我描述的性别则可能标注为女性。

    15110

    如何构建用户画像

    image.png 在《4个问题带你了解用户画像》中,我们了解了用户画像的定义、作用及使用注意事项等。 就有用户留言问了:在实际工作中,构建用户画像的方法有哪些?如何构建用户画像呢? 下面我将结合通过案例,带你了解构建用户画像的4个步骤: image.png 用户画像是为业务服务的,因此我们构建画像之前一定要清晰项目背景和业务需求。 用户归类 image.png 回顾用户画像的定义:用户画像是目标用户的代表性画像,其中包含了用户属性、场景、痛点和需求等。 实际构建过程中,我们往往无法用一个画像代表所有目标用户。 其实在画像背后,是丰富的资料库和调研信息。用户画像强调简单易用,但当实际工作中需要例证和具体数据时,我们依旧可以调用其他信息。 4.  验证效果 image.png 我们开篇强调过,用户画像是为业务服务的。因此提炼画像不是工作的结束,促进画像运用和验证效果也是重要步骤。

    26200

    如何构建用户画像

    在《4个问题带你了解用户画像》中,我们了解了用户画像的定义、作用及使用注意事项等。 就有用户留言问了:在实际工作中,构建用户画像的方法有哪些?如何构建用户画像呢? 下面我将结合通过案例,带你了解构建用户画像的4个步骤: 用户画像是为业务服务的,因此我们构建画像之前一定要清晰项目背景和业务需求。 用户归类 回顾用户画像的定义:用户画像是目标用户的代表性画像,其中包含了用户属性、场景、痛点和需求等。 实际构建过程中,我们往往无法用一个画像代表所有目标用户。 以上信息归纳总结,就是最终的用户画像: 成就型人格者: 外向型探索家: 剧中人: 客观型行业人员: 画像完成后,可能有朋友要问,做了那么多前期工作,最后就剩下简洁的画像了? 因此提炼画像不是工作的结束,促进画像运用和验证效果也是重要步骤。

    90930

    Ps|文字人物海报

    图1.2 素材 2 完成思路 我们可以看到文字人物海报的主要特点在于文字填充进人物轮廓,因此我们首先要制作人物的轮廓图(单一颜色);填充文字:一个一个的文字打在海报上,由于文字数量多且大小不一,会消耗大量时间 ,因此可以将文字作为画笔的类型使用,最后要使文字绘出人物的轮廓,我们可以通过先填充文字再对人物使用剪贴蒙版;又或者直接在人物的蒙版内绘画。 3 操作步骤 3.1 插入人物图片并使用裁剪工具调整至合适大小 ? 图3.1 3.2 对当前图层使用阈值,并调整合适参数使人物轮廓清晰 ? 图3.2 3.3 使用色彩范围工具选取人物的选区,并新建图层,并在人物选区下填充黑色以新建人物图层 ? 图3.3 3.4 新建图层并在当前选区下新建蒙版 ? 图3.12 4 总结 本次教程基础原理十分简单,重点在于1.如何制作人物的轮廓;2.如何将文字填充进人物并保证人物的基本轮廓不变;3.线性光的图层混合模式的效果是什么。

    40220

    如何构建用户画像

    伴随着对人的了解逐步深入,一个概念悄然而生:用户画像(UserProfile),完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 一、什么是用户画像? 二、为什么需要用户画像 用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少? 所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。 3.1 数据源分析 构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。 一个事件模型包括:时间、地点、人物三个要素。每一次用户行为本质上是一次随机事件,可以详细描述为:什么用户,在什么时间,什么地点,做了什么事。 百分点现已全面应用用户画像技术于推荐引擎中,在对某电商客户,针对活动页新访客的应用中,依靠用户画像产生的个性化效果,对比热销榜,推荐效果有显著提升:推荐栏点击率提升27%,订单转化率提升34%。

    1.2K60

    什么是用户画像——从零开始搭建实时用户画像(一)

    用户画像 简介 用户画像,作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。 建立用户画像和精准化分析是关键。 用户画像可以使产品的服务对象更加聚焦,更加的专注。 用户画像是根据市场研究和数据,创建的理想中客户虚构的表示。创建用户画像,这将有助于理解现实生活中的目标受众。 企业创建的人物角色画像,具体到针对他们的目标和需求,并解决他们的问题,同时,这将帮助企业更加直观的转化客户。 用户画像最重要的一个步骤就是对用户标签化,我们要明确要分析用户的各种维度,才能确定如何对用户进行画像

    6.9K33

    相似人群画像算法

    string 与uid喜好相似的人群,格式为用户编号:相同阅读量,相似用户之间以逗号分隔 sim_num BIGINT 相似人群的人数 update_date string 数据日期 2、基础用户画像存在 MongoDB中 Image [2].png 字段 含义 _id 用户id profile(离线)positive(实时) 用户正画像(喜欢),每个维度以分号间隔,每个子维度以逗号间隔,值格式为key_id :weight,维度含义依次为一级分类、二级分类、关键字、topic、阅读来源 negative 负画像(不喜欢),其他字段的含义与正画像一样 update_time 更新时间 cityCode或city 城市编码 3、相似人群画像也存在MongoDB中 QQ截图20180719095235.png 二、整体思路 由于TESLA集群无法直接操作MongoDB,需要将TDW里面的用户画像数据,通过洛子系统导出至 HDFS,再与MongoDB中原有群画像进行合并。

    1.7K61

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • 媒体智能标签

      媒体智能标签

      视频智能标签(IVLD)将视频智能分析输出文本标签、图像标签和人物标签,并输出与视频的标题、摘要、封面等结构化信息,并通过应用控制台进行可视化展示。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券