学习
实践
活动
专区
工具
TVP
写文章

人脸图像识别(python人脸识别技术)

人脸识别技术的应用和发展 谈到应用,我的第一映像就是手机上的人脸识别解锁,目前在学校公寓里面也有人脸识别的机器,我记得首先是收集了我们学生们的照片,应该是存入数据库的,我们学生的信息,包括学号,以及所在系等等 ,学校都是存入数据库的。 学生在进入公寓时需要进行人脸识别,机器会进行识别。系统有两种识别方式,一是识别人像,二是进行刷卡,刷卡会将自己的信息读取,会与数据库的信息对比,也是一种识别的方式。 #import sys #python内置库 import cv2 #计算机视觉领域 import face_recognition #人脸识别库,如果读取图片的话,会是图像矩阵 #就是每个图片的rgb 当然对于视频动态图像也是可以的,我们python中也有调用摄像头的模块,以及也有可以将手机的摄像头将摄像头转换地址的,我们可以在代码中加入进来,调用摄像头并控制拍照片,这样就可以和这个结合起来,实现动态人脸识别

68060
  • 广告
    关闭

    人脸识别限时特惠,10万次资源包仅需9.9元!!

    基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    C++ OpenCV人脸图像提取

    前言 《C++ OpenCV Contrib模块LBF人脸特征点检测》文章中已经介绍了人脸特征点的检测,本篇文章是在原代码的基础上实现人脸的提取。 ? 实现效果 ? 从上图上可以看到,左边蓝色方框里面是截取的人脸图像,然后在人脸图像的基础上针对特征点选定区域,最后生成右边圆框中的人脸图像。 # 实现方式 1 使用DNN检测到人脸并截取人脸部分区域 2 在截取的人脸区域中检测人脸68个特征点 3 针对68个特征点实现凸包检测形成图像掩膜 4 根据掩膜提取图像人脸信息 关于人脸68个特征点 上图中介绍了人脸特征点的几个关键位置: 位置 点的范围 左侧下巴轮廓 0-7 下巴 8 右侧下巴轮廓 9-16 左侧眉毛 17-21 右侧眉毛 22-26 鼻梁区域 27-30 ‍ 鼻底区域 31-35 结语 源码下一篇会再提交上去,现在的源码在处理人脸的Delaunay三角形的 提取,正好遇到了问题。等下篇的时候一起说一下。 完

    90430

    DeepFaceDrawing: 使用草图生成人脸图像

    来源:DeepHub IMBA本文约1300字,建议阅读8分钟本文为你介绍使用人脸或者草图来制作人脸照片的想法。 在本文中,介绍了使用人脸设计或草图来制作人脸照片的想法。 (架构和思想) 数据集: 使用 CelebAMask-HQ 数据集的人脸图像创建了一个新的数据集,并用于训练(Train)和测试模型。 在这个数据库中只收集了面对面的图像,没有任何其他添加,例如眼镜、口罩等。 该数据库包括 17,000 对真实图像及其设计,其中男性图像 6,247 对,女性图像 11,456 对。但是,这个数据集不是很大,需要新的数据来改进算法。 在第一阶段,这些图像进入第一个子网或CE,分别学习与每个人脸分量相关的每个编码器,在第二阶段,每个人脸分量根据相似度在其特定的类中使用K近邻算法,并被放置到图中。

    15030

    MDFR :基于人脸图像复原和人脸转正联合模型的人脸识别方法

    为了应对这些挑战,之前的人脸识别方法通常先把低质量的人脸图像恢复成高质量人脸图像,然后进行人脸识别。然而,这些方法大多是阶段性的,并不是解决人脸识别的最优方案。 为了解决这些问题,已经有很多方法使用分阶段模型来分别处理相应的低质量因子影响的人脸图像,即首先将低质量人脸恢复成高质量的人脸图像,随后进行人脸转正并用于人脸识别。 FRN网络的作用是将低质量人脸图像重建为高质量人脸图像,而FFN网络将FRN生成的侧脸图像进行转正。 基于3D形变模型(3D Morphable Model, 3DMM),二维人脸图像对应的三维顶点可以通过人脸正交基线性加权相加而得到: 通过尺度正交映射将三维人脸顶点映射到二维图像平面,二维侧脸人脸图像可以表示为 消融实验在Multi-PIE数据库上的对比结果。 同时,表1展示了 MDFR 的不同变异体对不同姿态人脸的 rank-1 识别率。

    36520

    python+opencv 实现图像人脸检测及视频中的人脸检测

    下载HAAR与LBP数据 2. opencv相关知识 二、python+opencv实现人脸检测 1. 图像人脸检测 2. 图像人脸检测 3. 视频中人脸检测 4. detectMultiScale函数:检测人脸算法,其参数如下: image:要检测的输入图像 scaleFactor:表示每次图像尺寸减小的比例 minNeighbors:表示每一个目标至少要被检测到多少次才算是真的人脸 ,因为周围的像素和不同的窗口大小都可能检测成人脸 minSize:表示目标的最小尺寸 maxSize:表示目标的最小尺寸 Haar-like矩形特征:是用于物体检测的数字图像特征。 图像人脸检测 import cv2 as cv def face_detection(image): # 创建一个级联分类器 加载一个.xml分类器文件 它既可以是Haar特征也可以是LBP 图像人脸检测 import cv2 as cv def face_detection(image): # 转成灰度图像 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY

    26720

    python+opencv 实现图像人脸检测及视频中的人脸检测

    下载HAAR与LBP数据 2. opencv相关知识 二、python+opencv实现人脸检测 1. 图像人脸检测 2. 图像人脸检测 3. 视频中人脸检测 4. detectMultiScale函数:检测人脸算法,其参数如下: image:要检测的输入图像 scaleFactor:表示每次图像尺寸减小的比例 minNeighbors:表示每一个目标至少要被检测到多少次才算是真的人脸 ,因为周围的像素和不同的窗口大小都可能检测成人脸 minSize:表示目标的最小尺寸 maxSize:表示目标的最小尺寸 Haar-like矩形特征:是用于物体检测的数字图像特征。 图像人脸检测 import cv2 as cv def face_detection(image): # 创建一个级联分类器 加载一个.xml分类器文件 它既可以是Haar特征也可以是LBP 图像人脸检测 import cv2 as cv def face_detection(image): # 转成灰度图像 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY

    6.6K61

    人脸专集5 | 最新的图像质量评价

    图像信息技术被广泛应用的情况下,对图像质量的评估变成一个广泛而基本的问题。由于图像信息相对于其它信息有着无可比拟的优点,因此对图像信息进行合理处理成为各领域中不可或缺的手段。 1 今天内容的简要 今天,“计算机视觉战队”主要和大家分享图像修复的质量评估。该技术主要是一种用于图像修复的图像质量评价(IQA)方法,旨在从多个结果中选择最佳的图像质量评价方法。 由于评估修复图像的质量与评估其他劣化图像是一项非常不同的任务,该方法设计了新的图像特征,专门用于评估修复的图像。此外还表明,利用两两学习特征,可以自动生成训练数据,并利用这些数据提高估计精度。 添加一些失真,如像素值的比例变化或应用低通滤波器,对原始图像往往发生修复的结果。这种失真图像和原始图像的几个级别产生训练数据,假设增加失真会减少偏好。 ? 当然,原始图像比畸变图像具有更好的质量。 为了显示其他现有方法失败的原因,在上图中的左上方和底部图像上覆盖了一个显著图。a-c与上上上图有关;原始图像和修复图像。上层图像显示,两幅图像之间没有显著性差异。

    1.3K30

    GAN对人脸图像算法产生了哪些影响?

    人脸图像是整个图像领域里面研究人员最多,应用最广的一个方向。GAN作为时下最新兴的深度学习模型,在人脸图像领域里已经颇有建树,今天咱们就聊聊GAN对人脸图像算法的一些主要影响。 遮挡人脸恢复与姿态仿真 人脸识别算法发展了很久也已经在工业界大规模应用,但是它的难题仍然是很明显的,遮挡就是其中一个大问题,GAN可以被应用于遮挡人脸的恢复。 另一方面,姿态对人脸识别等算法的影响非常大,也会造成上述的遮挡问题,将GAN用于姿态仿真,比如正脸化,将非常有助于人脸识别等模型的性能提升。 年龄与表情仿真 跨年龄的人脸识别和验证是一个非常具有挑战性的问题,如果能对年龄进行归一化,去除年龄因素的干扰,将大大提升跨年龄人脸识别的精度。 如何进行实战深造 上面简略地介绍了GAN在人脸图像领域中的主要应用,还有一些通用的属性编辑内容没有讲述。上述的每一个方向细细深究都会有非常多的内容,值得想在人脸算法领域有所建树的同学跟进。

    64110

    常用人脸检测数据库

    一、概述 人脸检测的目标是找出图像中所有的人脸对应的位置,算法的输出是人脸外接矩形在图像中的坐标,可能还包括姿态如倾斜角度等信息。常用的人脸检测数据库包括:FDDB和WIDER FACE。 二、FDDB 官方网站:http://vis-www.cs.umass.edu/fddb/ FDDB总共2845张图像,5171张,人脸非约束环境,人脸的难度较大,有面部表情,双下巴,光照变化,穿戴,夸张发型 ,遮挡等难点,是目标最常用的数据库。 有以下特点: 图像分辨率较小,所有图像的较长边缩放到450,也就是说所有图像都小于450*450,最小标注人脸20*20,包括彩色和灰度两类图像; 每张图像人脸数量偏少,平均1.8人脸/图,绝大多数图像都只有一人脸 有以下特点有: 图像分辨率普遍偏高,所有图像的宽都缩放到1024,最小标注人脸10*10,都是彩色图像; 每张图像人脸数据偏多,平均12.2人脸/图,密集小人脸非常多; 分训练集train/验证集

    1.1K50

    精选论文 | 人脸图像合成【附打包下载】

    人脸图像合成技术不仅可以实现“换脸”、“人脸编辑”等娱乐效果,而且能够有效提高人脸识别等技术的性能。今天,两位主讲嘉宾为大家精选了人脸图像合成中的几篇代表性的工作,和大家一起学习分享最新的研究进展。 此外,本文提出了一个大规模的高清人脸数据库(CelebA-HQ),有效地解决了高清生成中的数据问题。 推荐理由来自:曹杰 2 ? 推荐理由:Code:https://face-aging.github.io/RL-VAP/ 这篇文章发表于CVPR2019,首次实现视频人脸年龄转换,并提出了新的年龄图像数据库以及年龄视频数据库,目前图像数据库已经公开 ,而视频数据库尚未公开。 推荐理由: 这是近期放在Arxiv上的文章,效果相当惊艳,可以实现1024*1024分辨率的人脸姿态转换,并提出了一个高质量的人脸姿态数据库(6000*4000),这是目前人脸姿态转换里分辨率最高的生成结果与数据库

    65264

    单张图像重建3D人手、人脸和人体

    目前大多数的工作主要在2D上对人体姿态,人手关键点以及人脸进行研究,由于真实的场景是以3D为基础的,并且缺乏3D模型和丰富的3D数据,因此捕捉人体,人手和人脸的3D表面异常困难。 3.2 人体结构推理 有很多方法可以从图像或RGB-D估计3D人脸,也有很多方法可以从这些数据估计手部。 身体,人脸和人手的形态参数为 。 将SMPL-X拟合到图像作为一个优化问题,寻求目标函数的最小值: 其中 , 和 分别为身体,人脸和双手的姿态向量, 是可优化的位姿参数的完整集合。 实验结论 在这项工作中,本文提出了SMPL-X模型联合捕捉身体,人脸和手。此外,本文还提出了SMPLify-X方法,通过SMPL-X拟合到单个RGB图像和2D关键点的方法。

    84520

    人脸检测中,如何构建输入图像金字塔

    》中我们初步谈到了图像金字塔,在这篇文章中将介绍如何在人脸检测任务中构建输入图像金子塔。 人脸检测中的图像金字塔 人脸检测任务,输入是一张图像,输出图像人脸所在位置的Bounding Box。因为卷积神经网络强大的特征表达能力,现在的人脸检测方法通常都基于卷积神经网络,如MTCNN等。 网络确定后,通常只适用于检测一定尺寸范围内的人脸,比如MTCNN中的P-Net,用于判断12 × 12大小范围内是否含有人脸,但是输入图像人脸的尺寸是未知的,因此需要构建图像金字塔,以获得不同尺寸的图像 image.png 现在就可以回答上面的两个问题了: 给定输入图像,根据设置的最小人脸尺寸以及网络能检测的人脸尺寸,确定图像金子塔中最大图像和最小图像 根据设置的金字塔层间缩放比率,确定每层图像的尺寸 总结 人脸检测中的图像金字塔构建,涉及如下数据: 输入图像尺寸,定义为(h, w) 最小人脸尺寸,定义为 min_face_size 最大人脸尺寸,如果不设置,为图像高宽中较短的那个,定义为max_face_size

    1K40

    最强AI人脸技术:一张图像合成动图

    这种复杂性不仅源于建模人脸(存在大量建模方法),还来自建模复杂的嘴巴、头发和服装。第二个复杂因素是人类视觉系统对人类头部外观建模中的微小错误的敏锐性。 虽然基于扭曲的系统可以从单个图像创建说话状态的头部序列,但是它们可以处理的运动量、头部旋转和遮挡是有限的。 使用预定义的一组颜色将特征点光栅化为三通道图像,并将特征点用线段连接。 ? 鉴别器参数更新是由hinge loss的最小化驱动的,目的是最大化真实图像上的真实感得分,并且最小化合成图像得分。 训练过程中交替更新嵌入器、生成器和鉴别器的参数以最小化损失。 通常来说,我们可以使用元学习收敛后的嵌入器,用来估计新头像特写序列的嵌入向量,理论上这样也能生成真实的图像,但是存在较大的身份差距。为此,研究者还需要一个微调过程以生成更完美的图像

    3.8K20

    多面之神:攻击嵌入和图像恢复的人脸验证系统

    除此之外,用该技术复原的图像也和目标对象的人脸相似。 一旦收集到足够的信息,这种相似性可以帮助攻击者复原人脸图像。 从泄漏中嵌入回收。 攻击者探测不同图像的FVS的过程可以积累大量信息。 团队使用最先进的嵌入模型和真实世界的人脸数据集来评估我们的攻击。 团队的进攻包括五个步骤: 假定受害人的身份已被获取,例如通过搜索公共身份数据库。 为了获得更多的信息,通过不同的尝试收集多个分数,这可以通过展示不同的人脸图像来完成。 攻击者用测试人脸及其分数重建受害者的嵌入。 通过模型复原受害者面部图像。 在训练之前,需要收集一组真实的人脸图像来生成erGAN的嵌入。 Generator 普通GAN在噪声场上具有泛化能力。它可以生成逼真的图像,但它不能控制图像属性。

    17440

    图像处理智能化的探索:人脸识别裁图

    一幅图在数字化之后是这样的: (0, 0, 0) (2, 0, 0) …… (0, 0, 0) …… …… …… …… (160, 255, 255) (170, 255, 255) …… (255, 255, 255) 图像预处理 这个xml文件是OpenCV训练好的人脸Haar特征分类器,我们要做的就是直接用这个数据来匹配图像。下面几行完成了读取级联表和图像灰度化。 haarcascade_frontalface_default.xml') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 下面的代码运用Haar分类器扫描图像 ; - minNeighbors表示构成扫描图像滑动窗口的矩形的最小个数; - minSize表示滑动窗口的大小 - flags指定边缘检测的策略,一般为默认值 方法的返回值是一系列指定人脸边缘的矩形元组 总结 图像处理是新闻数据里很重要的一环,人脸识别只是其中一个部分,还有很多手段去提高新闻图片质量,钻研其中也是一件很有乐趣的事情。

    84830

    关注

    腾讯云开发者公众号
    10元无门槛代金券
    洞察腾讯核心技术
    剖析业界实践案例
    腾讯云开发者公众号二维码

    相关产品

    • 人脸融合

      人脸融合

      腾讯云神图·人脸融合通过快速精准地定位人脸关键点,将用户上传的照片与特定形象进行面部层面融合,使生成的图片同时具备用户与特定形象的外貌特征,支持单脸、多脸、选脸融合,满足不同的营销活动需求……

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券