前面一直做人脸检测相关内容,然后对比了下dib以及MTCNN的人脸检测效果主要是速度,以及FDDB准确率。最后给出生成FDDB测试文件的C++代码。 ---- FDDB 测试结果 注本文的MTCNN效果检测准确率不是最优的,最优的在FDDB上可达95%,测试效果如下: ? ---- 速度 在CPU和GPU模式下,对于三种不同尺寸的图片,运行一千次测试平均的时效: CPU模式 MTCNN(既检测人脸又做landmark): ? dlib (仅仅检测人脸): ? GPU模式 MTCNN(既检测人脸又做landmark): ? dlib (仅仅检测人脸): ? 可以看到: 在检测精度上MTCNN显然好于dlib 无论是CPU还是GPU模型下MTCNN的检测数度都好于dlib,而且dlib还做了人脸的landmark ---- dlib c++生成FDDB结果代码如下
人脸识别的功能我们已经研究了一段时间,我们主要需要实现的形式是将识别的人脸与人脸库中的人脸进行对比,然后通过系统评选出相似度最高的人脸进行匹配。 因此,假如我们传入一张对比人脸,会从注册中找一张最接近的人脸返回出去。 经过我们讨论,我们现在需要修改这个识别和对比的机制,需要传入一张图片,从注册人脸中找多张(目前是4张)人脸对比图返回出去,而不是一张相似度最高的人脸。 人脸对比接口的入口方法: image.png 传入的人脸检测接口(会不会识别到人脸),和人脸对比接口: image.png image.png 人脸对比接口会返回参数有:注册姓名、相似度和成功与否 下面的方法是用于输入人脸与注册人脸进行对比,也有相似度的返回值。
提供包括云服务器,云数据库在内的90+款云计算产品。打造一站式的云产品试用服务,助力开发者和企业零门槛上云。
使用了6个卷积块,最后的返回值是最后一个池化层和最后一个全连接层,输出最后一层池化层是为了在预测的是获取图像的人脸特征,做人脸对比。 人脸对比 人脸对比,人脸对比其实就是做普通的分类预测,但是输出的不是最后一层全连接层,而是最后一层池化层,这样输出的就是人脸的特征,然后使用对角余弦函数来计算他们的相似度。 通过人脸对比的方式实现一些场景的应用。比如对比证件上的人脸和真实的人脸是否为同一个人,操作方式判断人脸相似度的result是否达到预设值,推荐相似度为0.8时,为同一个人。 利用这种的人脸对比方式,有可以实现人脸识别。 首先我们可以把人脸以注册人脸的方式加入到注册人脸库中,加关联到该人脸的信息; 然后要进行识别时,把要识别的人脸和已注册的人脸库中的人脸进行对比,当对比为识别为同一个人脸,就算识别成功 这样的处理方式好处是
oneVsOneHD接口 let data = await this.facadeOneVsNPrx.oneVsOneHD(header_, body_); //处理回包转换为云api参数 dotnetSDK的人脸比对请求 /// 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。 /// 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。 /// 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。 /// 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。 /// 不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。 this.SetParamSimple(map, prefix + "QualityControl", this.QualityControl); } } } 请求的注释里有详细的解释,其实就是在线
价格对比 现有以下三种情况: A:小型创业公司每月处理1000张图片 B:数字生产商每月处理10万张图片 C:数据中心每月处理1000万张图片 ? 比较四种SDK 以下是四种工具支持的语言: ? inter-rater 可信度 在让计算机进行人脸识别之前,我先记录下了自己所观察到的图片中人脸数量。同时,我还找了三位同时对图片进行识别。 对这张图,我们四人有不同的结论,分别是10张、13张、16张和16张人脸。所以我打算取平均值,14。 比较结果 ? 图中可以看出,微软智能达到17.55%的人脸检测率,为什么成功率如此低? 虽然亚马逊的工具能检测出最多的人脸,但是谷歌和微软的处理时间明显更快。 另外,在人脸相对较小的图片中,同样还是亚马逊表现得更好: ? IBM的作用在普通图片上一般般,但是在难度更大的图片上,IBM的能力就很大了。尤其是在不常见的角度进行人脸识别或者残缺人脸识别。例如下面三张图片的人脸只有IBM识别了出来: ? ? ?
java.net.HttpURLConnection; import java.net.URL; import java.util.List; import java.util.Map; /** * 说明:获取百度人脸识别 ; e.printStackTrace(System.err); } return null; } } 2.人脸对比 package org.fh.util ; import java.util.*; import net.sf.json.JSONObject; /** * 说明:人脸对比 * 作者:F-H * from:www.fhadmin.cn String param = GsonUtils.toJson(list); // 注意这里仅为了简化编码每一次请求都去获取access_token,线上环境 return null; } //PHOTODATA1 图片1的 base64码 //PHOTODATA2 图片2的 base64码 返回的score大于80 说明是同一个人
当前阶段我们也在积极开发AI人脸检测、人脸识别、车牌识别等项目,将AI智能检测识别与视频处理等技术互相融合、交互,并在线下场景中落地应用。 今天和大家分享一个技术干货:如何控制人脸识别比对的时间间隔。 人脸智能分析项目在识别到人脸后,随即进行对比、入库。这里需要实现的是摄像头在识别到人脸后,控制对比的时间间隔。 在后台打开人脸识别的策略后,就会使用GO协程开启一个定时任务,在后台配置的时间间隔内,定时改变识别的状态,将人脸对比改为true可对比状态,如图: 而在识别到人脸进行对比过后,再将状态改为false, 那么下次回调I帧时,通过定时任务,人脸识别状态为true时再次对比。 这样就能达到控制人脸识别比对的时间间隔了。
导语 介绍人脸对齐的定义、任务、应用、常用算法以及难点 一、 人脸对齐,也叫做人脸特征点检测,图为人脸特征点例子 [1503364877459_5055_1503364878157.png][1503365510964 即:x = F(i) 所以, 人脸对齐算法便是设计函数(规则)F, F的优劣变体现在拟合效果、运行效率、参数存储空间、泛化能力(即适应数据集以外的人脸,比如真实环境下的人脸)。 基于人脸表观建模 分为两类,一是对全局纹理建模,这里全局是指整张脸,主要有AAM等;一种对局部纹理进行建模,有颜色模型、投影模型等。 关于人脸检测与对齐的融合 这类算法的idea是检测与对齐部分过程可以复用, 该类算法对于跟踪有很好的帮助, 因为在跟踪过程中需要验证预测的区域是否是人脸, 需要用到人脸检测器, 而人脸检测器通常速度较慢 该类算法有 JDA(Joint Cascade Face Detection and Alignment)、MTCNN等 五、 人脸对齐面临的挑战 大姿态、夸张表情、光线明暗、遮挡、场景多变等等问题。
科学统计也同样表明,即使存在血缘和遗传关系的两个人,比如双胞胎,他们的指纹并没有比随机两人的指纹表现出明显更高的相关性。通常我们将指纹中突起的纹路称为脊线,而将指纹的整体纹路称为脊线模式。 由于每个手指指纹的脊线模式唯一且不会改变,因此可以将指纹作为每个人身份的标志,用于身份的鉴别。 ? 人脸识别,作为生物特征识别技术之一,是一种通过分析比较人脸视觉特征信息进行身份鉴别的计算机技术。 尤其值得注意的是,人脸识别可以对被识别者进行隐蔽操作,在视频监控领域有着重要的应用价值。 静脉识别系统一种方式是通过静脉识别仪取得个人静脉分布图,依据专用比对算法从静脉分布图提取特征值,另一种方式通过红外线 CCD摄像头获取手指、手掌、手背静脉的图像,将静脉的数字图像存贮在计算机系统中,实现特征值存储 静脉比对时,实时采取静脉图,运用先进的滤波、图像二值化、细化手段对数字图像提取特征,采用复杂的匹配算法同存储在主机中静脉特征值比对匹配,从而对个人进行身份鉴定,确认身份。
今天就和大家交流下如何实现一个简易版的人脸对比,非常有趣! 整体思路: 1、预先导入所需要的人脸识别模型; 2、遍历循环识别文件夹里面的图片,让模型“记住”人物的样子; 3、输入一张新的图像,与前一步文件夹里面的图片比对,返回最接近的结果。 在这里,这两个参数文件就对应了不同的功能(它们对应的神经网络结构也不同): shape_predictor.dat这个是为了检测人脸的关键点,比如眼睛,嘴巴等等;dlib_face_recognition.dat 是在前面检测关键点的基础上,生成人脸的特征值。 在这一步中,我们要完成的是,对图片文件夹里面的人物图像,计算他们的人脸特征,并放到一个列表里面,为了后面可以和新的图像进行一个距离计算。关键地方会加上注释,应该不难理解。
pair constraint 2)使用多个人脸对齐数据库进行训练 以前基于 3D 模型拟合的人脸对齐算法只使用 稀疏的特征点作为 supervision。 如果要实现高质量的 密集人脸对齐(DeFA),面临的首要问题就是没有对应的训练数据库,所有的人脸对齐数据库中标记的特征点不超过68个特征点,所以我们需要寻找有用的信息来作为额外的 supervision 2) SIFT constraint 对应同一个人的不同人脸图像见到SIFT关键点在 3D人脸模型中应该对应 same vertexes leveraging multiple datasets: 2)为了实现这个密集人脸对齐,我们定义了一个新颖的 3D 人脸模型拟合算法加入多个约束和 跨数据库训练 3)我们模型的性能优异。 vertices 对应 人脸图像中 2D 特征点的位置,基于一种对应关系(weak perspective projection),我们可以根据 3D face shape 来估计 2D 人脸的 dense
OpenCV实现人脸对齐 一:人脸对齐介绍 在人脸识别中有一个重要的预处理步骤-人脸对齐,该操作可以大幅度提高人脸识别的准确率与稳定性,但是早期的OpenCV版本不支持人脸Landmark检测,因此一般都是通过对人脸进行分割 ,然后通过角点检测来寻找眼睛两个角点,连线之后根据它们有水平线的角度,旋转实现人脸对齐之后在提取人脸区域,OpenCV3.x版本开始支持获取Landmark数据,最常见的Landmark数据就是人脸的68 实现对齐主要是基于眼睛的位置,对人脸倾斜进行几何变换,实现人脸对齐操作,人脸对齐对提高人脸识别率特别重要,常见的人脸识别系统都会包含人脸对齐操作,举例如下: ? 二:人脸对齐代码实现 基于OpenCV实现人脸对齐主要分为如下几步 1.人脸检测器定义与Landmark检测 OpenCV中通过HAAR或者LBP特征实现了人脸检测,最新的OpenCV3.4基于残差网络也实现了人脸检测 数据提取获得眼睛位置坐标,这里我们获取的是36与45两个点坐标计算角度(参照第一张图),然后通过几何变换实现人脸对齐操作。
,提取人脸特征值,再用这些特征值去做比对分析处理,识别出到底是谁,国内厂家也不少,比拼的就是准确度误报率,速度无非就是靠堆硬件来,什么VPU各种并行运算都堆上去,速度杠杠的,好多厂家都做到了几个毫秒的级别 ,估计很多厂家都是在开源的基础上加上了自家的算法,一直跑呀跑的整出了符合自家算法的人脸模型文件,比如百度的人脸识别模型文件,经过好几年的发展,越来越大越来越细越来越准。 百度人脸识别在线版和离线版SDK的封装: 离线版要求支持C++11的编译器,而且必须为MSVC。不支持mingw编译器。 在线版中的密钥等信息,务必记得换成自己申请的。 二、功能特点 支持的功能包括人脸识别、人脸比对、人脸搜索、活体检测等。 在线版还支持身份证、驾驶证、行驶证、银行卡等识别。 在线版的协议支持百度、旷视,离线版的支持百度,可定制。 人脸比对同时支持两张图片和两个特征值比对。 相关功能自定义一套协议用于客户端和服务端,可以通过TCP通信进行交互。 自定义人脸识别协议非常适用于中心一台服务器,现场若干设备请求的场景。
前言 CVer 前段时间分享了一个很棒的开源人脸检测库:libfacedetection,详见:重磅! 最快人脸检测库开源 2019年3月25日,Amusi 在github上发现 follow很久的左庆大佬刚push了一个项目: ZQCNN-MTCNN-vs-libfacedetection。 库,包含快速人脸检测模型(基于MTCNN),106点landmark,人头检测模型等 ZQCNN-MTCNN-vs-libfacedetection ZQCNN:下载时间2019-03-25 09:00 (1)对比keliamoniz1.jpg ? ? (2)对比4.jpg ? ? (3)对比其他图片 ? 侃侃 ZQCNN-MTCNN 和 libfacedetection 都是特别好的人脸开源库,检测速度都很快,在此感谢左庆和于仕琪老师的开源精神 两个项目链接如下,欢迎 star支持: https://github.com
人脸识别是人工智能机器学习比较成熟的一个领域。人脸识别已经应用到了很多生产场景。比如生物认证,人脸考勤,人流监控等场景。对于很多中小功能由于技术门槛问题很难自己实现人脸识别的算法。 Azure人脸API对人脸识别机器学习算法进行封装提供REST API跟SDK方便用户进行自定义开发。 Azure人脸API可以对图像中的人脸进行识别,返回面部的坐标、性别、年龄、情感、愤怒还是高兴、是否微笑,是否带眼镜等等非常有意思的信息。 对人脸识别后的结果信息组装成字符串,当鼠标移动到人脸上的时候显示这些信息。 Azure人脸API除了能对图片中的人脸进行检测,还可以对多个人脸进行比对,检测是否是同一个人,这样就可以实现人脸考勤等功能了,这个下次再说吧。
目前用于深度换脸的程序基本都是用python编程语言基于tensorflow进行计算。 视频deepfakes中文站(deepfakes.com.cn)) 下面几个程序的对比和官网下载地址,上deepfakes中文站(deepfakes.com.cn)获得百度云地址。 Fakeapp 系统:Win7, Win10 优点:集成GUI图形界面,环境安装比较简单,只要下载主程序和CORE文件就行 缺点:容易出错,效率偏低,更新很慢 总结:适合没有编程基础用户 下载:官网(需要注册 Faceswap定制的图形图像界面版本,集成所需要的库文件和环境,可下载faceswap覆盖子文件夹更新 缺点:出错后难解决问题,Win7会出现一闪过的错误 总结:适合没有编程基础,追求效率高的用户 下载:在英文页面里 Myfakeapp,Dfaker等,大多数都是基于faceswap封装的;如果没有编程基础,建议从Openfaceswap入手;如果有编程基础,最好用Faceswap,faceswap的更新很快,有问题也可以在Github
功能上 进程,能够完成多任务,比如 在一台电脑上能够同时运行多个浏览器 线程,能够完成多任务,比如 一个浏览器中可以的多个网页窗口 定义的不同 进程 Process :是进程实体的运行过程,系统进行资源分配合调度的一个独立单位 区别 一个程序至少有一个进程,一个进程至少有一个线程。 线线程不能够独立执行,必须依存在进程中 线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高。 进程的缺点: 操作系统调度切换多个线程要比切换调度进程在速度上快的多。而且进程间 内存无法共享,通讯也比较麻烦。 线程之间由于共享进程内存空间,所以交换数据非常方便;在创建或撤消进程时,由于系统都要为之分配和回收资源,导致系统的开销明显大于创建或撤消线程时的开销。 切换慢、内存不共享、通信相对麻烦、开销大。 人们把1000视为权威,我们反其道行之,捍卫1024的地位。我们不是键盘侠,我们只是平凡世界中不凡的缔造者 。
而损失函数在训练用于人脸识别的 CNN 过程中有重要作用。因此,本文对用于人脸识别的多种损失函数进行了性能对比。 无约束人脸识别是计算机视觉领域中最难的问题之一。 过去几年研究者提出了多种基于 CNN 的方法,其中大部分方法处理问题所需的复杂度和非线性,从而得到更一般的特征,然后在 LFW [12]、Megaface [13] 等主要人脸数据集上达到当前最优准确率 因此,近年来研究者也在研究 CNN 模型的其它方面,如损失函数、非线性、优化器等。其中一个重要研究是开发适合人脸识别的损失函数。 本论文对近期提出的用于深度人脸识别的损失函数进行了综合性能对比。该研究实施了大量实验,从不同方面(比如架构的影响(如深度和重量)、训练数据集的影响)来判断不同损失函数的性能。 表 3:ResNet50 和 MobileNetv1 这两个架构在 MS-Celeb-1M 和 CASIA-Webface 数据集上获得的训练准确率对比,和在 LFW 数据集上获得的测试准确率对比。
腾讯云神图·人脸试妆基于腾讯优图领先的人脸识别算法,提供包括试唇色、测肤质、试妆容等多种功能,只需上传图片即可在线试妆,为开发者和企业提供高可用的人脸试妆服务......
扫码关注云+社区
领取腾讯云代金券