展开

关键词

人脸比对的业务逻辑

oneVsOneHD接口 let data = await this.facadeOneVsNPrx.oneVsOneHD(header_, body_); //处理回包转换为云api参数 dotnetSDK的人脸比对请求 /// 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。 /// 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。 /// 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。 /// 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。 /// 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 /// 非腾讯云存储的Url速度和稳定性可能受一定影响。 /// 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 /// 非腾讯云存储的Url速度和稳定性可能受一定影响。

37810

视频平台人脸识别比对控制比对时间间隔的代码设计

当前阶段我们也在积极开发AI人脸检测、人脸识别、车牌识别等项目,将AI智能检测识别与视频处理等技术互相融合、交互,并在线下场景中落地应用。 今天和大家分享一个技术干货:如何控制人脸识别比对的时间间隔。 人脸智能分析项目在识别到人脸后,随即进行对比、入库。这里需要实现的是摄像头在识别到人脸后,控制对比的时间间隔。 在后台打开人脸识别的策略后,就会使用GO协程开启一个定时任务,在后台配置的时间间隔内,定时改变识别的状态,将人脸对比改为true可对比状态,如图: 而在识别到人脸进行对比过后,再将状态改为false, 那么下次回调I帧时,通过定时任务,人脸识别状态为true时再次对比。 这样就能达到控制人脸识别比对的时间间隔了。

10920
  • 广告
    关闭

    人脸识别限时特惠,10万次资源包仅需9.9元!!

    基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    通过USB接入双目UVC协议人脸比对相机,外接AI相机实现1:1比对开发

    标准UVC设备,兼容性强,自带人脸识别算法,支持活体识别,支持1:1比对,不借助外部设备即可进行人脸识别,输出人脸属性值。支持活体识别,有效防止照片、视频和面具等假体攻击。 双目USB1.jpg 可用于智能零售,人证对比,顾客分析,人脸跟踪抓拍,等应用领域开发,二次开发资料完善,帮助开发者和系统集成商快速实现产品的人脸识别相关功能,开发周期短,成本低。 双目USB2.jpg 工作流程: 1、后端管理系统对接相机的SDK,通过身份证读卡器读取证内人脸图片,然后推送到相机内,相机完成与现场人员进行人证照片比对,并输出比对结果与活体检测结果。 2、后端管理系统对接相机的SDK,通过调取已有的人脸库图片,推送到相机内,相机完成人脸图片与现场人员照片的比对,并输出比对结果与活体检测结果。

    32860

    人脸识别SDK识别速度测试报告

    xx型号人脸识别SDK测试报告 ▌一、测试环境 1.1测试设备信息 设备信息 配置信息 系统版本 Android 9 运行内存 2G 内置存储 16G CPU 4核1.6gHz 人脸识别SDK xx型号自研人脸识别 SDK(下文简称xxSDK) 1.2 照片库标准 1)图片光线自然,无过度曝光; 2)人脸为正面,五官不存在遮挡; 3)人脸区域分辨率不低于 100*100,照片不大于5M ▌二、测试场景 功能模块 人脸识别 测试目的 测试xx型号xxSDK人脸识别速度 测试数据 测试人脸库照片4600张,包含测试人员照片 测试样本人员 Xx、qq、ee、rr、tt、yy等 测试场景描述 室内自然光线下, 测试人员正脸在设备前停留,距离30cm-50cm 2.1 测试场景 ▌三、测试结果 3.1 测试结果 1)在测试中,人脸识别成功时间与人脸角度,距离摄像头远近有关; 2)xxSDK支持遮挡或丢失部分特征值 测试次数为40次,平均识别成功用时为990毫秒 ▌四、测试结论 1)xxSDK支持部分特征值不完整的场景 2)进入识别范围时要稍作停留才可以识别成功 3)在4600张全脸识别场景中,xxSDK的识别平均速度

    63320

    Facebook用CNN做机器翻译:速度比对手快9倍

    为了跨越这一障碍,Facebook本周公布了一种创新的机器学习翻译方法,据称速度比竞争对手快9倍。 目前,这项工作仍停留在研究阶段,Facebook公开了论文,并在GitHub上开源了相关代码。

    47460

    使用python3.7和opencv4.1来实现人脸识别和人脸特征比对以及模型训练

    OpenCV4.1已经发布将近一年了,其人脸识别速度和性能有了一定的提高,这里我们使用opencv来做一个实时活体面部识别的demo     首先安装一些依赖的库 pip install      第二步,就是为模型训练收集训练数据,还是通过摄像头逐帧来收集,在脚本运行过程中,会提示输入用户id,请从0开始输入,即第一个人的脸的数据id为0,第二个人的脸的数据id为1,运行一次可收集一张人脸的数据 sucess, img = cap.read() # 转为灰度图片 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 检测人脸 Exiting Program".format(len(np.unique(ids))))     最后一步,人脸测试,我们将摄像头中的人脸和模型中的特征进行比对,用来判断是否为本人 import 最后,送上人脸识别项目地址: https://gitee.com/QiHanXiBei/face_get/tree/master

    9020

    序列比对(一)全局比对Needleman-Wunsch算法

    前言 序列比对是生信领域的一个古老课题,在这一波NGS的浪潮中重新引起大家的广泛关注。由于生物序列的特殊性,在比对的时候允许插入缺失,所以往往是一种不精确匹配。 全局比对算法 所谓全局比对算法,就是根据一个打分矩阵(替换矩阵)计算出两个序列比对最高得分的算法。关于它的介绍网上已经非常多了,我们只需看看其中的关键点及实现代码。 关键点 打分矩阵: 选用不同的打分矩阵或者罚分分值会导致比对结果不同,常用BLAST打分矩阵。 计算比对最高得分的算法: 常用动态规划算法(Needleman-Wunsch算法)。 ? 图片引自https://www.jianshu.com/p/2b99d0d224a2 打印出最高得分相应的序列比对结果: 根据得分矩阵回溯,如果最优比对结果有多个,全部打印出来。 理解打分系统背后的概率论模型: 比对分值可以理解为匹配模型和随机模型的对数几率比(log-odds ratio)。

    3.4K20

    算法优化——如何将人脸检测的速度做到极致

    (3)速度问题,虽很多人脸检测算法的速度已经很快,但在一个人脸分析(如人脸识别)系统中,人脸检测步骤的计算量往往超过50%。大部分检测算法采用窗口扫描的方式,窗口数目巨大,所以计算量居高不下。    如果你用手机自拍照片训练人脸检测器,应用在视频监控中,一般效果不会太好;如果你对所有人脸样本进行人脸对齐,要求双目绝对水平,那么训练出的分类器速度会比较快,但不能处理人脸姿态变化。 即人脸样本越单一,训练出的分类器的速度会越快,但正确检测率低;如果样本复杂,速度变慢但检测率升高。如何平衡样本的复杂性和检测速度,需要针对具体应用斟酌。   此外负样本也很关键。 四、代码优化: 消灭重复计算   通过分析工具,找出最影响速度的代码段,有针对性地优化。一般来说是判断窗口是否是人脸的代码最耗时,因为调用次数最多。 五、未来展望   到目前为止,Boosting方法在人脸检测中依然具有明显的速度优势。但基于深度学习的目标检测方法进展迅速,不容小视。

    1.6K60

    序列比对(七)序列比对之线性空间算法

    一般而言,运用动态规划算法进行序列比对对内存空间的要求是 O(mn) 阶的,本文介绍了一种线性空间要求的序列比对方法。 前文如《序列比对(一)全局比对Needleman-Wunsch算法》所介绍的运用动态规划算法进行序列比对时,对内存空间的要求是 O(mn) 阶的。 图片引自https://www.jianshu.com/p/2b99d0d224a2 但是如果要求回溯呢,是否有一种线性空间算法来进行序列比对呢?前人已经给出了多种算法。 图片内容引自《生物序列分析》 如图中所说,关键点就是找到v值,然后通过不断的分划,最终得到全部的比对序列。本文给出了这种算法的一种代码实现。 代码的关键在于终止条件的设置以及必要时巧妙地颠倒行列。 与 O(mn) 阶的算法相比,这种算法只能得到其中一种最佳比对方式,而无法得到所有的可能。 代码运行的效果: ?

    45830

    实战 | 如何用最快的速度学会Dlib人脸识别开发?

    但是由于Dlib对于人脸特征提取支持很好,有很多训练好的人脸特征提取模型供开发者使用,所以Dlib人脸识别开发很适合做人脸项目开发。 上面所说的人脸识别开发,主要是指人脸验证,就是输入两张人脸照片,系统会对比输出0或者1,代表判断是否是同一个人。 一般的人脸识别开发可以简单分为1.人脸特征建模与2.使用人脸特征模型进行验证(其实还应包括人脸对齐等,这些也可以划分到1中)。 其实我们就可以使用这个功能做一个简单的应用,用来检测图片或者视频中人脸的个数。 2.人脸特征点提取 在实战1的基础上添加人脸特征提取功能。 3.人脸识别验证 在第二步的基础上,我们再进一步,实现将人脸提取为特征向量,从而我们就可以对特征向量进行比对来实现人脸的验证,这里采用的是对比欧式距离的方法。

    47940

    速度超越OpenCV的人脸检测库 libfacedetection 开源!

    Github项目地址:https://github.com/ShiqiYu/libfacedetection 这是一个用在图像中的基于CNN的人脸检测开源库。 在使用Microsoft Visual Studio编译源代码的时候,请选择“Maximize Speed(最大化速度)/-O2”。 make 在Windows系统上进行基于CNN的人脸检测 结果如下所示: Method - 方法 Time FPS Time FPS X64 X64 X64 X64 Single-thread 基于CNN的ARM Linux人脸检测(树莓派 3 B +) 结果如下所示: Method - 方法 Time FPS Time FPS Single-thread - 单线程 Single-thread

    63730

    详解序列比对算法 01 | 两条序列比对与计分矩阵

    根据序列比对范围和目的,分为两种: 1、全局比对 Global Alignment 顾名思义,就是对两条序列的全长都进行比对 AACGGGGTG | ||| | CATGGGATT 当然有时候序列比对时会不尽人意 :8-1-3=4 这种比对常常用于基因家族分析,系统发育树构建等 2、局部比对 Local Alignment 目的是在两条序列比对后,获取序列比对分数或置信度最高的匹配序列片段。 为了获得最佳的比对序列,就需要比较序列间的比对得分大小。 那么现在有两个需要解决的问题: 设计一种规则,用于计算最真实的比对得分 设计一种算法,来快速精准的比对序列 这时,有大牛提出计分矩阵和最优比对算法来解决这两个问题。 需要注意,由于不同的蛋白质家族进化速度并不相同,因此选用的 PAM 也会不一样。 总的来说,如果研究进化关系远的蛋白质序列,最好选 > 100 PAM。

    1.8K21

    序列比对(25)编辑距离

    编辑距离的求解过程和全局比对是十分相似的(关于全局比对,可以参见前文《序列比对(一)全局比对Needleman-Wunsch算法》),都需要全部符号参与比对,都允许插入、缺失和错配。 编辑距离与最长公共子序列 在只允许插入和缺失而不允许错配的情况下,两个字符串的编辑距离可以通过最长公共子序列的长度(关于最长公共子序列,可以参看前文《序列比对(24)最长公共子序列》)间接算出来。 ,j)比对的最低得分 }; typedef struct Unit *pUnit; void strUpper(char *s); void printAlign(pUnit** a, const int i][j]->M); printf("\n"); } */ printf("min score: %d\n", aUnit[m][n]->M); // 打印最优比对结果

    35710

    通过比对进行容器联动

    当中间容器变化之后,标题栏也要跟着变化 设计个比对依据: 抽象类BaseView中定义抽象方法,每个继承的View都必须实现,为自己的界面定义一个唯一的int常量,作为比对依据 降低容器之间的耦合度:

    22130

    kallisto比对参考转录组

    kallisto是2016年发表在Nature Biotechnology上的一个比对工具,可以将bulk或者single-cell RNA-Seq数据的序列直接比对到转录组,然后进行转录本鉴定及定量。 kallisto的优势在于比对速度很快,这是因为用了一种伪比对方法,即将k-mers比对到参考转录组上。在用20套模拟数据与以往其他软件速度比较中,kallisto速度明显更快: ? 1.

    95320

    序列比对:替换计分矩阵

    序列比对 当研究一条DNA或蛋白质序列时,主要关注的是其包含的遗传信息;当研究两条或多条DNA或蛋白质序列时,则主要关注不同序列之间的差别与联系。 在生物信息学中,对生物大分子的序列比对是非常基本的工作。 上一篇文章DNA与蛋白质的序列比对原理介绍了两个序列相似性和距离的定量分析方法,即序列对齐与匹配/非匹配字符的打分。 PAM矩阵是目前蛋白质比对中第一个广泛使用的最优矩阵,它是基于进化原理的,建立在进化的可接受点突变模型PAM(PointAccepted Mutation)基础上,通过统计相似序列比对中各种氨基酸之间实际替换的发生率而得到的 PAM矩阵是从蛋白质序列的全局比对结果推导出来的,而BLOSUM矩阵则是从蛋白质序列块(短序列)比对而推导出来的。但在评估氨基酸替换频率时,应用了不同的策略。 基本数据来源于BLOCKS数据库,其中包括了局部多重比对(包含较远的相关序列,与在PAM中使用较近的相关序列相反)。

    20320

    身份采集、活体检测、人脸比对...旷视是如何做FaceID的? | 公开课笔记

    从功能上来说呢,我们的产品包括身份证的质量检测、身份证 OCR 识别、活体检测、攻击检测以及人脸比对,整个解决方案可以看出是建立在云跟端两个基础上,我们在端上提供了 UI 解决方案,就提供 UI 界面可以方便集成 ▌人脸比对 活体检验之后,我们就可以进行人脸比对的环节。 我先简单跟大家介绍一下人脸识别的一个基本原理:首先我们会从一幅图片里面去做人脸检测并做出标识,相当于在一张图片里面找到这张人脸,并且表示出整个人脸上的一些基本关键点,如眼睛、眉毛等等。 当我们通过 OCR 去识别出来用户姓名、身份证号,并通过活体检测之后,我们会从公安部的权威数据库里面去获得一张权威照片,会跟用户视频采集到的一张高质量照片进行比对,会返回给用户是不是一致,当然我们不会去直接告诉用户是不是一致 所以总结一下就是 Face ID 会为大家提供一整套的这种身份验证解决方案,整个方案涵盖了质量检测、身份证识别、活体检测、攻击检测和人脸比对等一系列的功能,其中在活体检测方面,我们采用了云加端的这种联合防范方式

    4K61

    扫码关注腾讯云开发者

    领取腾讯云代金券