展开

关键词

人脸识别技术优缺点,人脸识别技术的原理

现如今,在案件侦破,小区门禁,手机解锁等等方面,我们都需要用到人脸识别技术,这项技术应用到了很多的场景当中,对于日常的生活来说也提供了不少的便利,下面我们就将为大家介绍人脸识别技术。 ,而且通过人脸识别技术,可以不易察觉,不会陷入被人伪装欺骗的地步。 虽然人脸识别技术的优点非常多,但是我们也需要注意到它的缺点,因为人类的脸部或多或少存在着一定的相似性,所以对于人脸的外形来说,它是很不稳定的,而且有些人脸识别技术还可能会导致信息的泄露。 二、人脸识别技术的原理 人脸识别识别技术的一种,主要是通过人类的面部特征来进行身份确认,在判断出是否存在人脸之后,就会开始检测脸部的位置和大小,根据检测出来的信息,就可以提出身份特征,然后和已知的人脸之间进行对此 人脸识别技术在现在的社会中已经越来越普遍了,我们也日常的生活中随处可见人脸识别技术,有些小区也是可以通过人脸识别技术来确定身份,不过我们在进行人脸识别的过程,也要多加注意保护自己的信息。

1K20

人脸图像识别(python人脸识别技术

python人脸识别 人脸识别的崛起 什么是人脸识别 人脸识别技术的应用和发展 python人脸识别 导入库 实现代码 人脸识别的崛起 什么是人脸识别 人脸识别是将采集到的数据信息,根据人脸特征信息进行比对 每逢谈到人脸识别技术,就会想到人工智能,近年来,人工智能的发展成为当代技术革命的一部分。可以说计算机领域技术的发展,极大的带动了这场革命。 人脸识别技术的应用和发展 谈到应用,我的第一映像就是手机上的人脸识别解锁,目前在学校公寓里面也有人脸识别的机器,我记得首先是收集了我们学生们的照片,应该是存入数据库的,我们学生的信息,包括学号,以及所在系等等 目前,从我国人脸识别技术应用来看,主要集中在三大领域:考勤门禁、安防以及金融等等。人脸识别目前面临着一个难题是,对于明亮可能有点要求,像黑暗的环境就比较困难,还有面部本身黑色的人也可能会有误差。 应用前景:随着人工智能的兴起,更加高端的识别技术才是主流发展方向,无需接触、更加方便、直观的方式是未来方向,人脸识别具备无需被测者配合的特点,采集器扫过人脸就能进行对比,这在公安刑侦领域有着巨大的前景,

19760
  • 广告
    关闭

    人脸识别限时特惠,10万次资源包仅需9.9元!!

    基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python人脸识别技术实现

    AI涉及的领域众多,图像识别中的人脸识别是其中一个有趣的分支。 百度的BFR,Face++的开放平台,汉王,讯飞等等都提供了人脸识别的API,对于老码农而言,自己写一小段代码,来看看一张图片中有几个人,没有高大上,只是觉得好玩,而且只需要7行代码。 margin-bottom: 1.1em; font-family: 'microsoft yahei'; margin-top: 0px; padding-bottom: 0px; padding-top: 0px;">人脸识别系统一般分为 :人脸图像采集、人脸图像预处理、人脸图像特征提取以及匹配与识别。 '; margin-top: 0px; padding-bottom: 0px; padding-top: 0px;">循环读取人脸的矩形对象列表,获得人脸矩形的坐标和宽高, 然后在原图片中画出该矩形框

    11900

    人脸识别技术的真相

    人脸识别是机器学习的直接应用,这项技术已经被消费者、行业和执法机关广泛采用,它可能为我们的日常生活带来了便利,但也有严重的隐私问题。 其中,执法机关会使用这项技术从人群中识别出他们感兴趣的人。 人脸识别技术还可以用于推断人的特征和行为,如情绪、年龄或健康状况。 生物识别解决方案市场的主要参与者包括Safran(FR)、NEC Corporation(JA)、Cognitec(DE)和Face++(CH)。 但是,人脸识别是一种不同于其他技术的生物识别工具。 乔治敦隐私&技术法律中心执行董事、人脸识别专家Alvaro Bedoya在近日接受USA Today采访时说,“你可以删除cookies。你可以修改浏览器设置。 当前,人脸识别面临的挑战包括实现不同姿势、不同年龄人脸变体识别的健壮性、使用“照片简图(photo-sketches)”代替真正的照片、处理低分辨率照片、识别遮挡、彩妆及欺骗技术

    71710

    Python人脸识别技术实现

    AI涉及的领域众多,图像识别中的人脸识别是其中一个有趣的分支。 百度的BFR,Face++的开放平台,汉王,讯飞等等都提供了人脸识别的API,对于老码农而言,自己写一小段代码,来看看一张图片中有几个人,没有高大上,只是觉得好玩,而且只需要7行代码。 margin-bottom: 1.1em; font-family: 'microsoft yahei'; margin-top: 0px; padding-bottom: 0px; padding-top: 0px;">人脸识别系统一般分为 :人脸图像采集、人脸图像预处理、人脸图像特征提取以及匹配与识别。 '; margin-top: 0px; padding-bottom: 0px; padding-top: 0px;">循环读取人脸的矩形对象列表,获得人脸矩形的坐标和宽高, 然后在原图片中画出该矩形框

    20040

    智能门锁:人脸识别技术

    智能门锁在经过2018年的爆发直至近几年来的持续增长,目前市场上各类的产品基本都涵盖了密码、刷卡、指纹这几项关键的开门方式,人脸识别技术作为一种新的引用技术,成为众多厂家为追求产品差异化而形成的一种趋势 图片来源:https://www.sohu.com/a/501784145_161795 2D人脸识别技术 2D人脸识别技术早在安防、监控、门禁、考勤中就已有应用,其硬件结构相当于一颗RGB摄像头,通过捕捉人脸图像 图片来源:《2021人脸识别行业白皮书》 3D人脸识别技术 3D人脸识别技术加入了深度信息算法技术,与2D识别技术相比,其识别准确率相差不大,但是在活体检测的准确率上有一定的提高。 图片来源:https://www.guayunfan.com/lilun/560934.html 在3D人脸识别厂家中, 以结构光技术为主打的厂家有:奥比中光、的卢深视、深岚视觉等; 以TOF技术为主打的厂家有 :艾芯智能等; 以双目视觉为主打的厂家有:商汤、旷视等 与2D人脸识别相比,3D人脸识别结合深度信息,在防伪安全上由此有了提高,在3D人脸识别的3中技术中,结构光作用距离相对较近,良率及一致性相对较差;

    11230

    技术综述】人脸表情识别研究

    随着机器学习和深度神经网络两个领域的迅速发展以及智能设备的普及,人脸识别技术正在经历前所未有的发展,关于人脸识别技术讨论从未停歇。 Polygram与以往的社交软件的方式不同,是一款基于人脸识别的表情包为主要特色的社交软件,加持人脸识别与神经网络技术,它可以使用用户的脸部表情来生成一个emoji。 在这里,用户可以通过人脸识别技术,搜索发送相应表情。Polygram是一个人工智能动力社会网络,可以理解人脸表情。 它以基于人脸识别的表情包为主要特色,即能够利用人脸识别技术,对面部的真实表情进行检测,从而搜索到相应的表情,并发送该表情。 目前,仅针对人脸识别技术相对成熟,表情识别还有很大的市场,接下来需要做的是将表情识别运用到实际场景中,将其与现实需求进行良好结合。

    1.7K40

    人脸识别技术的发展历程

    人脸识别既是一项起源较早的技术,又是一门焕发着活跃生命力、充满着学术研究魅力的新兴技术领域。 随着近些年人工智能、大数据、云计算的技术创新幅度的增大,技术更迭速度的加快,人脸识别作为人工智能的一项重要应用,也搭上了这3辆“快车”,基于人脸识别技术的一系列产品实现了大规模落地。 ? 在可以预见的未来,人脸识别领域必将会散发出更耀眼的光芒。 下面,我们将从人脸识别的历史发展情况和当前技术热点,揭秘这项神秘而又熟悉的技术。 第三阶段:自动人脸识别阶段 只有将识别过程自动化才可以真正达到人脸识别的效果。而这项技术的发展,离不开机器学习的发展。 人脸识别作为当前非常热门且技术含量很高的一项技术,吸引了很多优秀学者与工程师的目光。在如今这个“数据爆炸”的新时期,人脸识别作为一项炙手可热的研究领域迎来了发展的新契机。

    5.8K40

    动态人脸识别技术的研究

    因此,静态人脸识别具有极大地局限性,动态人脸识别技术具有更广泛地应用前景。 1. 研究背景 早在1964年,国外就开始了对人脸识别的相关研究。 动态人脸识别原理 2.1动态人脸识别系统框架 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。 人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等,其流程如图2-1所示。 现有的静态人脸识别技术无法满足某些特殊场合的需要,诸如海关监测等需要对视频中的人脸进行动态进行动态跟踪和识别,而满足这种场合需求的动态人脸识别技术相对欠缺。 尽管人脸识别技术已经发展多年,但是还未能达到人们预期的目标。

    13830

    人脸识别技术介绍和表情识别最新研究

    一、人脸识别技术介绍 人脸识别作为一种生物特征识别技术,具有非侵扰性、非接触性、友好性和便捷性等优点。早在二十世纪初期,人脸识别已经出现,于二十世纪中期,发展成为独立的学科。 人脸识别真正进入应用阶段是在90年代后期。人脸识别属于人脸匹配的领域,人脸匹配的方法主要包括特征表示和相似性度量。 人脸识别通用的流程主要包括人脸检测、人脸裁剪、人脸校正、特征提取和人脸识别人脸识别主要包括一对一或者一对多的应用场景,对目标人脸进行识别和验证。 人脸表达模型主要分为2D,2.5D,3D。 3D人脸由多张不同角度的深度图像合成,具有完整连续的曲面信息,包含深度信息。2D图像人脸识别的研究时间较长,软硬件技术较为完备,得到了广泛的应用。 完善的深度学习技术构成了大多数计算机视觉问题中的最新方法,例如对象分类或检测,语义分割或面部和身体分析。

    71920

    人脸识别技术介绍和表情识别最新研究

    一、人脸识别技术介绍 人脸识别作为一种生物特征识别技术,具有非侵扰性、非接触性、友好性和便捷性等优点。早在二十世纪初期,人脸识别已经出现,于二十世纪中期,发展成为独立的学科。 人脸识别真正进入应用阶段是在90年代后期。人脸识别属于人脸匹配的领域,人脸匹配的方法主要包括特征表示和相似性度量。 人脸识别通用的流程主要包括人脸检测、人脸裁剪、人脸校正、特征提取和人脸识别人脸识别主要包括一对一或者一对多的应用场景,对目标人脸进行识别和验证。 人脸表达模型主要分为2D,2.5D,3D。 3D人脸由多张不同角度的深度图像合成,具有完整连续的曲面信息,包含深度信息。2D图像人脸识别的研究时间较长,软硬件技术较为完备,得到了广泛的应用。 备注:在公众号「3D视觉工坊」后台,回复「人脸识别技术」,即可获得上述两篇论文。

    39920

    人脸识别 | Java 实现 AI人工智能技术 - 人脸识别-附源码

    好了,跑偏了,今天康哥总结了AV、不,AI的新的技术点【人脸识别】,上几期的图像识别、语音识别、车牌识别、网络爬虫没来得及看的同学,请点击这里。 《Java 实现 AI 人工智能技术 - 语音识别功能》 《Java 实现 AI人工智能技术 - 网络爬虫功》 《使用 Java 实现AI人工智能技术-图像识别功能》 需求: 登录使用人脸识别登录 、人脸录入功能 技术点 & 开发工具: Myeclipse、JDK1.8、Tomcat8、SSM框架、HTTPS、JSON、jsp、百度云 人脸识别: 是基于人的脸部特征信息进行身份识别的一种生物识别技术 用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别技术流程: 人脸图像采集及检测 人脸图像预处理 人脸图像特征提取 匹配与识别 识别算法: 基于人脸特征点的识别算法(Feature-based

    13.2K131

    深入浅出人脸识别技术

    在深度学习出现后,人脸识别技术才真正有了可用性。这是因为之前的机器学习技术中,难以从图片中取出合适的特征值。轮廓?颜色?眼睛? 本文中笔者试图用通俗的语言探讨人脸识别技术,首先概述人脸识别技术,接着探讨深度学习有效的原因以及梯度下降为什么可以训练出合适的权重参数,最后描述基于CNN卷积神经网络的人脸识别。 一、人脸识别技术概述 人脸识别技术大致由人脸检测和人脸识别两个环节组成。 人脸检测不一定会使用深度学习技术,因为这里的技术要求相对低一些,只需要知道有没有人脸以及人脸在照片中的大致位置即可。 所以,单纯的评价某个人脸识别算法的准确率没有意义,我们最需要弄清楚的是误识别率小于某个值时(例如0.1%)的通过率。不管1:1还是1:N,其底层技术是相同的,只是难度不同而已。

    1.4K62

    Java + opencv 实现人脸识别,图片人脸识别、视频人脸识别、摄像头实时人脸识别

    、实时摄像头人脸识别、视频文件人脸识别 * @Description: OpenCV-4.1.1 测试文件 * @date: 2019年8月19日 17:17:48 * @version: V-1.0.0 ,识别成功保存图片到本地 getVideoFromCamera(); // 2- 从本地视频文件中识别人脸 // getVideoFromFile(); // 3- 本地图片人脸识别识别成功并保存人脸图片到本地 face(); // 4- 比对本地2张图的人脸相似度 (越接近1越相似) String basePicPath while(i<3) { // 匹配成功3次退出 capture.read(video); HighGui.imshow("实时人脸识别 : 2- 测试本地视频识别人脸 3- 测试本地图片人脸识别 4- 测试本地2张图片人脸的相似度 完结。

    19620

    基于OpenMV的人脸识别,支持人脸注册、人脸检测、人脸识别

    1061700625/OpenMV_Face_Recognition ''' >> author: SXF >> email: songxf1024@163.com >> description: 用LBP特征进行人脸识别 ,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It = 0: debug(res) return 1 def match(d0): # 人脸识别 dir_lists = os.listdir( ,但由于SD卡内无文件,无法匹配人脸 ? 按下F1按键,进入人脸注册模式,连续拍5张照存入SD卡(拍摄时绿灯快闪50ms,拍摄完绿灯闪1000ms) ? 再识别,可完成人脸识别(红灯闪1000ms)。

    1.3K30

    扫码关注腾讯云开发者

    领取腾讯云代金券