、实时摄像头人脸识别、视频文件人脸识别 * @Description: OpenCV-4.1.1 测试文件 * @date: 2019年8月19日 17:17:48 * @version: V-1.0.0 haarcascade_frontalface_alt.xml"); } public static void main(String[] args) { // 1- 从摄像头实时人脸识别 // 3- 本地图片人脸识别,识别成功并保存人脸图片到本地 face(); // 4- 比对本地2张图的人脸相似度 (越接近1越相似) String basePicPath 编辑启动类:Edit Configuration VM options:-Djava.library.path=D:\Sofeware\opencv\build\java\x64; 1- 测试摄像头实时识别人脸 : 2- 测试本地视频识别人脸 3- 测试本地图片人脸识别 4- 测试本地2张图片人脸的相似度 完结。
之前发过一篇关于对图片上人脸检测的博客。 链接:https://blog.csdn.net/weixin_43582101/article/details/88702254 本篇则是讲解通过计算机摄像头来识别人脸并捕捉人脸位置。 ), 2, 8, 0) cv2.imshow("detected faces", bgr) # cv2.rectangle 用矩形把找到的形状包起来 return bgr 打开本地摄像头 capture = cv2.VideoCapture(0) # VideoCapture 读取本地视频和打开摄像头 height = capture.get(cv2 VideoWriter_fourcc('D', 'I', 'V', 'X'), 15, (np.int(width), np.int(height)), True) # cv2.VideoWriter 保存摄像头视频
基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务
OV7725摄像头软件实现简单的二值化处理 项目使用的摄像头型号: 正点原子OV7725摄像头模块,带FIFO的摄像头模块。
本篇概览 本文是《JavaCV的摄像头实战》的第八篇,前面的操作夯实了的帧和流处理的基本功,接下来开始实现一些常见的CV能力,就从本篇的人脸识别开始吧 OpenCV中常用的人脸识别是基于Haar特征的级联分类器 ,本篇借助JavaCV来使用该分类器实现人脸识别 简单的设计 编码之前先把要做的事情梳理一下: 识别功能可能用在多个场景:窗口预览、推流、存文件都可能用到,所以识别功能的代码最好独立出来,不要和预览、推流这些代码写在一起 ,如下图,识别的接口DetectService会作为每个应用的成员变量存在: 识别服务不仅是人脸识别,今后还有人体识别、物体识别等等,所以设计一个识别服务接口DetectService,人脸识别、人体识别 ,实现真正的人脸识别功能 完整代码如下,核心是init方法中实例化的分类器classifier,以及负责处理每一帧的convert方法,这里面会中调用刚才写的静态方法DetectService.detect (为了不侵犯群众演员的肖像权,手动对面部做了马赛克处理): 至此,本地窗口预览集成人脸识别的功能就完成了,得益于JavaCV的强大,整个过程是如此的轻松愉快,接下来请继续关注欣宸原创,《JavaCV的摄像头实战
前言: 摄像头的工作原理大致为:景物通过镜头(LENS)生成的光学图像投射到图像传感器表面上,然后转为电信号,经过A/D[1] (模数转换)转换后变为数字图像信号,再送到数字信号处理芯片(DSP)中加工处理 我会分两大板块介绍: 第一是摄像头图像数据采集的过程 第二是图像数据在液晶屏上显示的过程 摄像头图像数据采集 以下是要讲的几个小点: 0.OV7725的摄像头结构 1.摄像头(实际上是图像传感器在采集 2.摄像头(从硬件电路上讲是0V7725芯片在传输数据)将数据传输给FIFO(起数据缓冲的作用)的过程是个什么样的过程。 3. (这个应该是可以理解了) 一个摄像头上的所有感光元件一起产生的数字信号构成一幅图像的数据,如此一幅图像采集完毕。 在提示一遍,我所讲解的硬件结构是,OV7725芯片的摄像头,有FIFO存储器芯片AL422B.## OV7725摄像头的彩色图像采集原理与液晶显示《一》 ## 后续的程序配置相继贴出。
1061700625/OpenMV_Face_Recognition ''' >> author: SXF >> email: songxf1024@163.com >> description: 用LBP特征进行人脸识别 ,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It = 0: debug(res) return 1 def match(d0): # 人脸识别 dir_lists = os.listdir( if res==1: usart3.write("Find It\r\n") # 程序开始 #debug(os.listdir()) main() 过摄像头可进行人脸检测 按下F1按键,进入人脸注册模式,连续拍5张照存入SD卡(拍摄时绿灯快闪50ms,拍摄完绿灯闪1000ms) ? 再识别,可完成人脸识别(红灯闪1000ms)。
1.人脸识别的难点 用户配合度 相似性 易变形 2.人脸识别的评测方法 LFW数据集(Labeled Faces in the wild):该数据库工有13233幅图像,其中5749个人,1680人有两幅及以上的图像 该数据库采集的是自然条件下人脸图片,目的是提高自然条件下人脸识别的精度。
降低计算强度 face_cascade = cv2.CascadeClassifier('d:\haarcascades\haarcascade_frontalface_alt.xml') # 探测人脸 # 根据训练的数据来对新图片进行识别的过程。 ,其他可以不写 scaleFactor= 1.01, #控制金字塔层数,通常范围1.01~1.5 参数越小,层数越多,结果越精确 minNeighbors = 1, #为5表示有5次重叠才认为人脸存在 minSize = (1,1),#寻找人脸的最小区域 ) # 处理人脸探测的结果 print ("{0}".format(len(faces))) for(x,y,w,h) in faces:
github.com/luyishisi/The_python_code.git文件夹是face-gensui 简述:使用python-subprocess多线程模块相链接,本项目主要用在树莓派上所以需要调用的摄像头函数与普通 所使用文本文件进行数据沟通,简单粗暴,文件2.py功能是将目录下的5.jpg进行人脸识别解析,将人脸的位置的重心存储在文件weizhi.txt文件中,然后就比较相对位置的差别,就能得出应该与移动的位置。 libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 进入start运行2.py可以单独测试人脸识别的功能 ,欲测试整体不断识别相对位置功能请运行lianxuzhibo.py文件 python lianxuzhibo.py,如果环境上没有大问题的话应该能在该目录下出现5.jpg图片文件,如果存在人脸,则会进行识别 ,建立一个weizhi.txt文件,存储每次人脸位置的重心, 首先核心代码是opencv-face识别,请看start目录下的2.py #coding=utf-8 import cv2 import cv2
python人脸识别 人脸识别的崛起 什么是人脸识别 人脸识别技术的应用和发展 python人脸识别 导入库 实现代码 人脸识别的崛起 什么是人脸识别 人脸识别是将采集到的数据信息,根据人脸特征信息进行比对 不过肯定的一点是,你的人脸识别首先要将人脸转化为计算机可以识别的数据,人脸识别其实就是计算机方面的数据识别。 人脸识别技术的应用和发展 谈到应用,我的第一映像就是手机上的人脸识别解锁,目前在学校公寓里面也有人脸识别的机器,我记得首先是收集了我们学生们的照片,应该是存入数据库的,我们学生的信息,包括学号,以及所在系等等 当然对于视频动态图像也是可以的,我们python中也有调用摄像头的模块,以及也有可以将手机的摄像头将摄像头转换地址的,我们可以在代码中加入进来,调用摄像头并控制拍照片,这样就可以和这个结合起来,实现动态人脸识别 我们可以有这个思路,这里只是给大家简单介绍一下python的这个人脸识别库。当然也会有其他的编程语言的实现人脸识别。 后期会写出动态拍照人脸识别。
本文我们接着来看看,在完成了人脸注册之后我们该如何识别出用户的人脸特征,从而通过人脸识别获取用户信息。 人脸识别的全部流程集成在官方 Demo 的 DetecterActivity 文件中。 还是来了解几个概念 人脸追踪 FT 年龄检测 Age 性别检测 Gender 其中人脸追踪 FT 与人脸检测 FD 功能基本一致(甚至代码基本都是相同的),Age 引擎用于识别年龄,Gender 引擎用于识别性别 识别流程 整体上比人脸注册还要简单,官方提供了很好的封装供我们使用,我们来看看流程。 第一步: 创建两个叠加在一起的 SurfaceView,一个用于显示摄像头的预览信息,一个用于框出摄像头预览中人脸的位置; //覆盖在相机预览之上的一层surfaceview mGLSurfaceView
在上一篇文章树莓派调用百度人脸识别API实现人脸识别,我们完成了树莓派人脸识别的基础环境配置,人脸识别功能也测试成功了,现在我们做一个小小的案例来实际应用一下,我们想树莓派人脸识别成功后,发送蓝牙串口数据给 import base64 import time import bluetooth from bluetooth_test import bt_open,servo_init,bt_close #百度人脸识别 AipFace(APP_ID, API_KEY, SECRET_KEY)#创建一个客户端用以访问百度云 #图像编码方式 IMAGE_TYPE='BASE64' camera = PiCamera()#定义一个摄像头对象 def go_api(image): result = client.search(str(image, 'utf-8'), IMAGE_TYPE, GROUP);#在百度云人脸库中寻找有没有匹配的人脸 bt_close() print('稍等三秒进入下一个') time.sleep(3) 总结 至此,当我们运行该代码,把脸凑到摄像头前
cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.LBPHFaceRecognizer_create()#LBPH人脸识别 特征图像划分为一个个单元格时,每个单元格在水平方向上的像素个数 grid_y表示将LBP特征图像划分为一个个单元格时,每个单元格在垂直方向上的像素个数 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象 ) src表示输入图像 labels表示标签 label, confidence=cv2.face_FaceRecognizer.predict(src) src表示输入图像 注意:置信度评分用来衡量识别结果与原有模型之间的距离
目录 1 读取图片 2 将图片灰度转换 3 修改图片尺寸 4 绘制矩形_圆 5 人脸检测 6 检测多张人脸 7 检测视频中的人脸 8 训练数据并人脸识别 8.1 训练数据 8.2 人脸识别 1 读取图片 8 训练数据并人脸识别 8.1 训练数据 import os import cv2 import sys from PIL import Image import numpy as np def getImageAndLabels face.LBPHFaceRecognizer_create() recognizer.train(faces,np.array(ids)) # 保存文件 recognizer.write('trainer.yml') 8.2 人脸识别 /trainer.yml') # 准备识别的图片 img = cv2.imread(r'E:/girl.jpg') # 将图片缩小至原来的1/2 height, width = img.shape[: (gray) for x, y, w, h in faces: cv2.rectangle(reSize, (x, y), (x+w, y+h), (0, 255, 0), 2) # 人脸识别
cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.FisherFaceRecognizer_create()#人脸识别 predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 10647.989937693492 算法:LDA人脸识别是一种经典的线性学习方法 , num_components[, threshold]]) num_components表示使用Fisherfaces准则进行线性判别分析时保留的成分数量,默认值是0 threshold表示进行识别时所使用的阈值
import cv2 import datetime import glob2 as gb相关库介绍video_capture = cv2.VideoCapture(0) # 使用cv2打开摄像头获取当前图像 'q'): break video_capture.release() cv2.destroyAllWindows() 需要的第三方库 face_recogniton是世界上最简单的人脸识别库了 你可以通过Python引用或者命令行的形式使用它,来管理和识别人脸,该软件包使用dlib中最先进的人脸识别深度学习算法,使得识别准确率在《Labled Faces in the world》测试基准下达到了 99.38%,它同时提供了一个叫face_recognition的命令行工具,以便你可以用命令行对一个文件夹中的图片进行识别操作。 代码部分 效果 识别成功 [在这里插入图片描述] [在这里插入图片描述] 识别失败 [在这里插入图片描述] 完整代码 # -*- coding: utf-8 -*- # @Time : 2019
,cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.EigenFaceRecognizer_create()#人脸识别 predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 19228.277485215305 算法:PCA人脸识别是将高维的人脸数据处理为低维数据后 (降维),再进行数据分析和处理,获取识别结果。 num_components[, threshold]]) num_components表示保留的分量个数,通常情况下,保留的分量个数为80 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象
该项目基于讯飞SDK实现的人脸检测,使用face++的webapi实现的人脸注册以及人脸识别。 人脸识别,我们可以理解为从一个专门保存人脸特征值的数据集合中找到最匹配的一组特征值。 所以在整个流程中应该包含以下几个步骤 人脸检测 (FD引擎) 即从摄像头预览中检测到人脸的存在,并且使用一个矩形框出人脸的范围。 人脸识别 (FR引擎) 当检测出人脸时,对人脸进行识别,如果人脸特征集合中存在该人脸信息,读取出该人脸信息及人员信息。 第三步: 经过上述的两部,我们已经成功的从图片中识别到了人脸,并且将该人脸在图片中的位置获取到了,接下来我们要做的就是使用 FR 人脸识别引擎识别该位置人脸中的特征信息。 if (!
现如今,在案件侦破,小区门禁,手机解锁等等方面,我们都需要用到人脸识别技术,这项技术应用到了很多的场景当中,对于日常的生活来说也提供了不少的便利,下面我们就将为大家介绍人脸识别技术。 虽然人脸识别技术的优点非常多,但是我们也需要注意到它的缺点,因为人类的脸部或多或少存在着一定的相似性,所以对于人脸的外形来说,它是很不稳定的,而且有些人脸识别技术还可能会导致信息的泄露。 二、人脸识别技术的原理 人脸识别是识别技术的一种,主要是通过人类的面部特征来进行身份确认,在判断出是否存在人脸之后,就会开始检测脸部的位置和大小,根据检测出来的信息,就可以提出身份特征,然后和已知的人脸之间进行对此 ,这样就可以识别出来每个人脸的身份了,在这个过程中是需要用到摄像头或者摄像机进行采集。 人脸识别技术在现在的社会中已经越来越普遍了,我们也日常的生活中随处可见人脸识别技术,有些小区也是可以通过人脸识别技术来确定身份,不过我们在进行人脸识别的过程,也要多加注意保护自己的信息。
腾讯云慧眼人脸核身(原金融级身份认证升级版)是一组对用户身份信息真实性进行验证审核的服务套件,提供各类认证功能模块,包含证件OCR识别、活体检测、人脸1:1对比、及各类要素信息核验能力,以解决行业内大量对用户身份信息核实的需求,广泛应用于金融、保险、政务民生、互联网、交通出行等领域。
扫码关注腾讯云开发者
领取腾讯云代金券