首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

OpenCV图像处理专栏十五 |《一种基于亮度均衡的图像阈值分割技术》

前言 对于光照不均匀的图像,用通常的图像分割方法不能取得满意的效果。为了解决这个问题,论文《一种基于亮度均衡的图像阈值分割技术》提出了一种实用而简便的图像分割方法。...该方法针对图像中不同亮度区域进行亮度补偿,使得整个图像亮度背景趋于一致后,再进行常规的阈值分割。实验结果表明,用该方法能取得良好的分割效果。...关于常规的阈值分割不是我这篇推文关注的,我这里只实现前面光照补偿的部分。算法的原理可以仔细看论文。论文原文见附录。 算法步骤 如果是RGB图需要转化成灰度图。...求取原始图src的平均灰度,并记录rows和cols。 按照一定大小,分为个方块,求出每块的平均值,得到子块的亮度矩阵。 用矩阵的每个元素减去原图的平均灰度,得到子块的亮度差值矩阵。...用双立方插值法,将矩阵 resize成和原图一样大小的亮度分布矩阵。 得到矫正后的图像:。

1.1K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    OpenCV图像处理专栏十一 | IEEE Xplore 2015的图像白平衡处理之动态阈值法

    算法介绍 这是OpenCV图像处理专栏的第十一篇文章,之前介绍过两种处理白平衡的算法,分别为灰度世界算法和完美反射算法。今天来介绍另外一个自动白平衡的算法,即动态阈值法,一个看起来比较厉害的名字。...算法原理 和灰度世界法和完美反射算法类似,动态阈值算法仍然分为两个步骤即白点检测和白点调整,具体如下: 白点检测 1、把尺寸为的原图像从空间转换到空间。 2、把图像分成个块。...5、设一个“参考白色点”的亮度矩阵,大小为。 6、若符合判别式,则作为“参考白色点”,并把该点(,)的亮度(分量)值赋给。若不符合,则该点的值为0。...白点调整 1、选取参考“参考白色点”中最大的10%的亮度(Y分量)值,并选取其中的最小值Lu_min。...分别计算R2,G2,B2的平均值,Rav,Gav,Bav。

    95520

    专栏 | OpenCV图像处理专栏十五 |《一种基于亮度均衡的图像阈值分割技术》

    前言 对于光照不均匀的图像,用通常的图像分割方法不能取得满意的效果。为了解决这个问题,论文《一种基于亮度均衡的图像阈值分割技术》提出了一种实用而简便的图像分割方法。...该方法针对图像中不同亮度区域进行亮度补偿,使得整个图像亮度背景趋于一致后,再进行常规的阈值分割。实验结果表明,用该方法能取得良好的分割效果。...关于常规的阈值分割不是我这篇推文关注的,我这里只实现前面光照补偿的部分。算法的原理可以仔细看论文。论文原文见附录。 算法步骤 如果是RGB图需要转化成灰度图。...求取原始图src的平均灰度,并记录rows和cols。 按照一定大小,分为个方块,求出每块的平均值,得到子块的亮度矩阵。 用矩阵的每个元素减去原图的平均灰度,得到子块的亮度差值矩阵。...用双立方插值法,将矩阵 resize成和原图一样大小的亮度分布矩阵。 得到矫正后的图像:。

    1.2K10

    使用 OpenCV 替换图像的背景

    技术实现 使用 OpenCV ,通过传统的图像处理来实现这个需求。 方案一: 首先想到的是使用 K-means 分离出背景色。...大致的步骤如下: 将二维图像数据线性化 使用 K-means 聚类算法分离出图像的背景色 将背景与手机二值化 使用形态学的腐蚀,高斯模糊算法将图像与背景交汇处高斯模糊化 替换背景色以及对交汇处进行融合处理...相近颜色替换背景的效果.png 于是换一个思路: 使用 USM 锐化算法对图像增强 再用纯白色的图片作为背景图,和锐化之后的图片进行图像融合。 图像锐化是使图像边缘更加清晰的一种图像处理方法。...USM(Unsharpen Mask) 锐化的算法就是对原图像先做一个高斯模糊,然后用原来的图像减去一个系数乘以高斯模糊之后的图像,然后再把值 Scale 到0~255的 RGB 素值范围之内。...融合后的效果.png 三. 总结 其实,我尝试过用 OpenCV 多种方式实现该功能,也尝试过使用深度学习实现。目前还没有最满意的效果。后续,我会更偏向于使用深度学习来实现该功能。

    2.4K30

    使用OpenCV测量图像中物体的大小

    本文来自光头哥哥的博客【Measuring size of objects in an image with OpenCV】,仅做学习分享。...原文链接:https://www.pyimagesearch.com/2016/03/28/measuring-size-of-objects-in-an-image-with-opencv/ 今天的文章是关于测量图像中物体大小和计算它们之间距离的系列文章的第二部分...“单位像素”比率 为了确定图像中对象的大小,我们首先需要使用参考对象执行“校准”(不要与内在/外在校准混淆)。...使用这个比率,我们可以计算图像中物体的大小。 用计算机视觉测量物体的大小 现在我们了解了“像素/度量”比率,我们可以实现用于测量图像中对象大小的Python驱动程序脚本。...我们还在第17行初始化了pixelsPerMetric值。

    2.7K20

    OpenCV | 二值图像分析的技巧都在这里

    轮廓属性 二值图像分析最常见的一个主要方式就是轮廓发现与轮廓分析,其中轮廓发现的目的是为轮廓分析做准备,经过轮廓分析我们可以得到轮廓各种有用的属性信息、常见的如下: 轮廓面积 轮廓周长 轮廓几何矩 轮廓的最小外接矩形...、高效完成各种二值图像分析需求,下面是我总结的一些常用的函数列表与说明。...,可以实现对二值图像的几何形状判别、测量、面积过滤、获取每个对象的几何属性包括面积、周长、编码点、形状、层次/位置信息、欧拉数、中心位置、倾斜角度。...综合运用代码演示 2020年 以前我分享过一些综合使用的例子,列表如下(都看过你就赢了): 二值图像分析案例精选 OpenCV二值图像案例分析精选 | 第二期 OpenCV轮廓层次分析实现欧拉数计算...代码如下: // 加载图像 Mat img = imread("D:/CoinsB.png"); imshow("Original Image", img); // 阈值化操作 Mat gray, binary

    1.8K30

    OpenCV图像处理中“投影技术”的使用

    问题引出 本文区分”问题引出“、”概念抽象“、”算法实现“三个部分由表及里具体讲解OpenCV图像处理中“投影技术”的使用,并通过”答题卡识别“”OCR字符分割”“压板识别”“轮廓展开分析”四个的例子具体讲解算法使用...在这样采集到的图像中,大量存在黑色的定位区块: ? 如果进一步定位,可以得到这样的结果: ? 如果做成连续图像 ? ?...从离散的角度来说,也就是: 局部最大值:F(x)>F(x−1)且F(x)>F(x+1) 局部最小值:F(x)<F(x−1)且F(x)<F(x+1) 类似于求极值、求切线等的情况。 ?...vup.push_back(i); if (vdate[i - 1] > 0 && vdate[i] == 0) vdown.push_back(i); } } 在具体使用过程中...在这样的OCR识别中,首先可以通过投影的方法,实现字符的分割。 2 . 压板识别 ? ? 在这样的项目中,同样可以通过投影的方法,获得各个压板的准确定位。 3、轮廓展开分析 ?

    1.3K20

    使用OpenCV和Python计算图像的“色彩”

    本文翻译自光头哥哥的博客: 【Computing image “colorfulness” with OpenCV and Python】,仅做学习分享。...今天我们将学习如何计算图像的色彩,然后,我们将使用OpenCV和Python实现色彩度量。 在实现了色彩度量之后,我们将根据颜色对给定的数据集进行排序,并使用我们上周创建的图像蒙太奇工具显示结果。...我们将发现,这是计算图像色彩的一种非常有效和实用的方法。 接下来,我们将使用Python和OpenCV代码实现这个算法。...在OpenCV中实现图像色彩度量 现在我们对色彩度度量有了基本的了解,让我们使用OpenCV和NumPy来计算它。 在本节中,我们将: 导入必要的Python包。 解析命令行参数。...我们将这个值存储为meanRoot。 计算图像色彩的最后一步是添加stdRoot和1/3 meanRoot,然后返回值。

    3.4K40

    基于OpenCV的区域分割、轮廓检测和阈值处理

    OpenCV是一个巨大的开源库,广泛用于计算机视觉,人工智能和图像处理领域。它在现实世界中的典型应用是人脸识别,物体检测,人类活动识别,物体跟踪等。 现在,假设我们只需要从整个输入帧中检测到一个对象。...对我而言,在将ROI框架设为阈值后,找到轮廓效果最佳。因此,要找到轮廓,手上的问题是- 什么是阈值? 阈值不过是图像分割的一种简单形式。这是将灰度或rgb图像转换为二进制图像的过程。例如 ?...(这是二进制阈值帧) 因此,在对rgb帧进行阈值处理后,程序很容易找到轮廓,因为由于ROI中感兴趣对象的颜色将是黑色(在简单的二进制脱粒中)或白色(在如上所述的反向二进制脱粒中),因此分割(将背景与前景即我们的对象分开...我们可以做的另一件事是,我们可以遮盖ROI以仅显示被检测到的轮廓本身覆盖的对象。再次- 什么是图像MASK? 图像MASK是隐藏图像的某些部分并显示某些部分的过程。这是图像编辑的非破坏性过程。...(背景被遮罩以仅捕获对象) 这是所说明技术的理想实现的完整代码。

    2.4K22

    基于OpenCV的图像融合

    本期我们将一起学习如何使用OpenCV的进行图像拼接。 01. 目录 python 入门 步骤1 —图像导入 步骤2-调整图像大小 步骤3-融合图像 步骤4-导出结果 02....Python Python是一种通用的编程语言,在分析数据方面非常流行,它还可以让帮助我们快速工作并更有效地集成系统。 03. 入门 对于该项目,我们将仅使用OpenCV库。...作为BSD许可的产品,OpenCV使企业可以轻松地使用和修改代码。我们需要安装此库,以便可以在程序中使用它。为了使OpenCV正常工作,我们也必须安装numpy库。...在调整大小之前,让我向您展示它们的原始大小: 如您所见,背景图像为853到1280像素。前景图像为1440至2560像素。我们将使用OpenCV的调整大小功能调整它们的大小。...它有5个参数,可以列出为:图像源1,src1权重,图像源2,src2权重,伽玛。每个图像的权重值必须小于1。

    97830

    基于 OpenCV 的图像分割

    在整个处理过程中,我们将使用 Python 包,以及OpenCV、scikit 图像等几种工具。除此之外,我们还将使用 numpy ,以确保内存中的值一致存储。...在此示例中,我们仅讨论一个图像。通过查看图像,我们可以看到没有任何明显的伪影会干扰分割。但是,小伙伴们可以使用中值滤镜消除离群值噪声并平滑图像。中值过滤器用中值(在给定大小的内核内)替换离群值。...要确定哪种阈值技术最适合分割,我们可以先通过阈值确定是否存在将这两个类别分开的独特像素强度。在这种情况下,可以使用通过目视检查获得的强度对图像进行二值化处理。...最简单的阈值处理方法是为图像使用手动设置的阈值。但是在图像上使用自动阈值方法可以比人眼更好地计算其数值,并且可以轻松复制。对于本例中的图像,似乎Otsu,Yen和Triangle方法的效果很好。...在本文中,我们将使用Otsu阈值技术将图像分割成二进制图像。Otsu通过计算一个最大化类别间方差(前景与背景之间的方差)并最小化类别内方差(前景内部的方差或背景内部的方差)的值来计算阈值。

    1.3K12

    OpenCV 4基础篇| OpenCV图像的裁切

    img:图像数据,nparray 多维数组 x, y:整数,像素值,裁剪矩形区域左上角的坐标值 w, h:整数,像素值,裁剪矩形区域的宽度、高度 retval:裁剪后获得的 OpenCV 图像,nparray...在这种情况下,你可能需要寻找其他方法来选择图像中的 ROI,例如使用固定坐标、图像分割算法等。...up:整数,表示裁剪区域左上角的 y 坐标。 right:整数,表示裁剪区域右下角的 x 坐标。这个值通常大于 left。 below:整数,表示裁剪区域右下角的 y 坐标。...这个值通常大于 upper。...Pillow库使用坐标系的原点在左上角,x轴向右增加,y轴向下增加。这与一些其他图像处理库(如OpenCV)的坐标系原点在左下角的约定不同,需要注意坐标的顺序和方向。

    50300

    使用OpenCV测量图像中物体之间的距离

    本文来自光头哥哥的博客【Measuring distance between objects in an image with OpenCV】,仅做学习分享。.../ 前两篇文章: 使用Python和OpenCV顺时针排序坐标 使用OpenCV测量图像中物体的大小 已经完成了测量物体大小的任务,今天进行最后一部分:计算图片中物体之间的距离。...上篇我们讨论了如何使用参考对象来测量图像中对象的大小。 这个参考对象应该有两个重要的特征,包括: 我们知道这个物体的尺寸(以英寸、毫米等表示)。 它很容易在我们的图像中被识别出来(根据位置或外观)。...给定这样一个参考对象,我们可以使用它来计算图像中对象的大小。 今天,我们将结合本系列前两篇来计算对象之间的距离。 计算物体之间的距离与计算图像中物体的大小算法思路非常相似——都是从参考对象开始的。...第16行和第17行通过取边界框在x和y方向上的平均值来计算旋转后的边界框的中心(x, y)坐标。

    5K40

    算法的权值-基于局部权值阈值调整的BP 算法的研究.docx

    基于局部权值阈值调整的BP 算法的研究.docx基于局部权值阈值调整的BP算法的研究刘彩红'(西安工业大学北方信息工程学院,两安)摘要:(目的)本文针对BP算法收敛速度慢的问题,提出一种基于局部权值阈值调桀的...所以本论文提出的算法是对局部神经元权值阈值的调整,而不是传统的BP算法需要对所有神经元权值阈值进行调一整,(结果)通过实验表明这样有助于加快网络的学速度。...关键词:BP神经网络,学算法,距离,权值阈值调整-hong(Xi'ing,Xi'):e・,,'.^算法的权值,.,work....但以往大多改进算法,在误差的反向传播阶段也就是训练的第二阶段,是对所有神经元的权值阈值都进行修改的。针対不同的输入,神经网络激发不同的神经元,所以可以在训练的第二阶段修改部分神经元的权值阈值。...2基于局部权值阈值调整算法的改进思想本文提出的算法结合生物神经元学与记忆形成的特点⑸,针对特定的训练样本,只激发网络中的部分神经元以产生相应的输出,而未被激发的神经元产生的输出则与目标输出相差较大,那么我们就需要対未被激发的神经元的权值阈值进行调整

    39320

    基于OpenCV的图像融合

    本期我们将一起学习如何使用OpenCV的进行图像拼接。 01. 目录 python 入门 步骤1 —图像导入 步骤2-调整图像大小 步骤3-融合图像 步骤4-导出结果 02....Python Python是一种通用的编程语言,在分析数据方面非常流行,它还可以让帮助我们快速工作并更有效地集成系统。 03. 入门 对于该项目,我们将仅使用OpenCV库。...作为BSD许可的产品,OpenCV使企业可以轻松地使用和修改代码。我们需要安装此库,以便可以在程序中使用它。为了使OpenCV正常工作,我们也必须安装numpy库。...在调整大小之前,让我向您展示它们的原始大小: 如您所见,背景图像为853到1280像素。前景图像为1440至2560像素。我们将使用OpenCV的调整大小功能调整它们的大小。...它有5个参数,可以列出为:图像源1,src1权重,图像源2,src2权重,伽玛。每个图像的权重值必须小于1。

    1.1K20
    领券