首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

童欣:从互动图像到智能图像

“从交互图形到智能图形”。...另外,我们专业的艺术家和捕捉设备,在过去的这么多年中帮助我们产生了大量的数据,这些高质量的数据可以帮助我们从中学习到一些三维内容的一些模型。...那我们的一个重要观察是虽然我们没有很多这样的训练数据能生成出来,但是我们在真实世界中从网上能够下载到大量的材质的图像出来。...然后我们发现另外一件很有意思的事情,假设我给了你一套材质贴图之后,现在的绘制算法已经足够得好了,它可以帮助我们非常真实地生成一些高质量的图像出来。...他对我们的工作非常感兴趣,因为在他们的日常工作中,即使为了做一个最简单的,大家看到像是抓着手臂这样的工作需要他们的一个研究生通过反复尝试,尝试半年、甚至两年到三年这么长的时间来做这个工作。

97950

从图像到语言:图像标题生成与描述

这种方法首先依赖于特征的表达能力,用以支撑将图像解析成准确的视觉语义概念;其次,需要构建较为完善的 Web 语义库,使得能够查询到置信度较高的语义本体,并组合成新的描述语句。...首先根据图像内容使用相似度与标题共识分值,从训练集中检索出相关的描述句子,然后使用文本引导注意力单元计算词汇与视觉区域的相关度,并据此提取图像的上下文特征。...Gu 等人(2018) 采用融合两层堆叠注意力机制的LSTM 网络,对视觉信息进行过滤,实现由粗到细的图像描述。...这种方法从视觉概念检测、生成句子到句子排序几个步骤之间是离散的,没有使用端到端的优化技术,从而也可能使得整个模型陷入局部最优状态,性能受到限制。...noun pair,ANP)”,将其嵌入到描述句子中,为每幅图像形成“正面(positive)”和“负面( negative)”的图像描述。

1.8K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    StarGAN - 图像到图像的翻译

    通过输入来自两个不同领域的训练数据,StarGANs模型可以学习将某一个领域的图片转换成为另一个领域。 例如,把一个人的发色(属性)从黑色(属性值)转换成棕色(属性值)。...生成器把图像和目标领域标签作为输入,生成一张非真实的图像.(b) 生成器试图根据所给的原始领域标签,把非真实图像重构为原始图像。...在位于判别器顶部的辅助分类器的帮助下,判别器也可以预测输入给它的图像的对应领域。 辅助分类器的作用是什么? 有了辅助分类器,判别器能够学习到原始图像的映射以及它在数据集中所对应的领域。...当生成器产生一张指定目标领域c(比如棕色头发)的新图像时,判别器可以预测所产生的图像的领域。因此生成器会产生新图像直到判别器给出对应的目标领域c(棕色头发)的预测为止。 ?...生成器将根据所给原始领域标签把生成的非真实图像重构为原始图像。我们将使用单一的生成器两次,第一次把原始图像翻译成目标领域的图像,第二次把翻译图像再重构成原始图像。 ?

    86020

    从迁移学习到图像合成

    02 从迁移学习到图像合成 后来,我因为阴差阳错进入到图像合成这个领域,意识到迁移学习和图像合成之间的内在关联,便把研究方向从迁移学习扩展到图像合成。...图像合成的问题定义非常简洁,但是涉及到的子问题却包罗万象,这也是图像合成问题的迷人之处。 ?...出于上述原因,我就开始做图像合成这方面的研究,但是这个方向比较小众,可能不会有high citation/impact, 并且不太好吹牛。之前写基金本子也都是从迁移学习的角度写,因为比较好吹牛。...我们从域翻译 (domain translation) 的角度考虑图像和谐化任务,先后提出了基于域验证 (domain verification) 的DoveNet和基于背景引导的域翻译 (background-guided...在摆放前景物体的时候,不仅位置大小要合理,而且希望得到的合成图在构图方面比较美观,这就涉及到美学评估的问题。

    91520

    【数字图像处理】旋转图像的几种方法

    今天介绍两种旋转图像的方法 OpenCV 方法 OpenCV 中带有一个旋转图像的函数 cv2.rotate rotate(src, rotateCode[, dst]) -> dst 参数: src...:输入图像 rotateCode:旋转方式 1、cv2.ROTATE_90_CLOCKWISE:顺时针 90 度 2、cv2.ROTATE_180:顺时针 180 度 3、cv2.ROTATE_90_COUNTERCLOCKWISE...numpy 方法 numpy 中也提供一种旋转图像或者矩阵的方法 np.rot90 顾名思义就是选择多少个 90 度,与 OpenCV 中实现不同的是,numpy 的这个函数是逆时针旋转的,其函数说明如下...: np.rot90(m, k=1, axes=(0, 1)) 参数:m:输入的矩阵或者图像 k:逆时针旋转多少个 90 度,k 取 0、1、2、3 分别对应逆时针旋转 0 度、90 度、180 度、270...度 axes:选择两个维度进行旋转 一个简单示例如下: ?

    5.5K40

    基于FPGA的图像旋转设计

    二,MATLAB仿真 方案一:【正向预设】从原图映射到目标图像 在此方案中,实现代码的方式是正向的思路,将原图中的像素点的坐标进行坐标的旋转,然后直接幅值到输出的图像中,此方案旨在找到输入坐标与输出坐标之间的代数对应关系...旋转后的图像 很明显可以看到,在旋转之后这两张图片出现了较大的差别,首先是原图像被裁减了,其次是目标图像中有较多的瑕点(杂点)。究其原因在于,从原图旋转后得到的目标图像的像素位置在原图中找不到。...方案三: 考虑到未对旋转后的图像进行显示区域的划分,因此此类旋转只是对单一像素点的旋转,然后在原图像的显示区域上进行坐标点的重新组合,得到显示的图像。...旋转后的图像 从图示的效果可以看出,边缘区域被裁剪的问题被解决了,但问题是图片加阴影的区域面积比原图大很多。...最终基于处理速度和资源占用的均衡考虑,最终选择方案二作为我们图像旋转的设计方案。 三,旋转坐标计算 在该设计中,要求图像拥有0到360的任意角度的旋转,坐标变换需要角度的正弦和余弦值。

    1.1K20

    从图像到知识:深度神经网络实现图像理解的原理解析

    作为近年来重新兴起的技术,深度学习已经在诸多人工智能领域取得了令人瞩目的进展,但是神经网络模型的可解释性仍然是一个难题,本文从原理的角度探讨了用深度学习实现图像识别的基本原理,详细解析了从图像到知识的转换过程...2 神经网络的训练过程 如图1所示,深度学习模型的架构一般是由一些相对简单的模块多层堆叠起来,并且每个模块将会计算从输入到输出的非线性映射。每个模块都拥有对于输入的选择性和不变性。...不同于前馈神经网络,RNN具有内部状态,在其隐藏单元中保留了“状态矢量”,隐式地包含了关于该序列的过去的输入信息。...当RNN接受一个新的输入时,会把隐含的状态矢量同新的输入组合起来,生成依赖于整个序列的输出。RNN和CNN可以结合起来,形成对图像的更全面准确的理解。...我们期待未来大部分关于图像理解的进步来自于训练端到端的模型,并且将常规的CNN和使用了强化学习的RNN结合起来,实现更好的聚焦机制。

    1.6K90

    OpenCV 3.1.0中的图像放缩与旋转

    一:图像放缩(zoom in/out) 函数resize相关API参数介绍 -src表示输入图像,类型一般是Mat类型 -dst表示输出图像,类型一般是Mat类型 -dsize表示输出图像大小,如果是零的话表示从...二:旋转 图像绕原点逆时针旋转a角,其变换矩阵及逆矩阵(顺时针选择)的图像如下: ?...OpenCV3.1.0中实现图像旋转需要用到的两个API函数分别是 - getRotationMatrix2D - warpAffine 第一个函数是用来产生旋转矩阵M,第二个函数是根据旋转矩阵M实现图像指定角度的旋转...从上面旋转以后图像可以看到四个角被剪切掉了,无法显示,我们希望旋转之后图像还能够全部显示,在之前2.x的OpenCV版本中要实现这样的功能,需要很多的数学知识,而在3.1.0中只需要添加如下几行代码即可实现旋转之后的全图显示...旋转之后全图显示如下: ? 可以看出基于OpenCV3.1.0实现图像旋转的时候同样会涉及到像素插值问题,可以选择的插值算法跟放缩时候一致。

    2.3K70

    从文本到图像:Lumina-mGPT 展现卓越的光学真实图像生成能力 !

    )和旋转位置嵌入(RoPE)(Su等人,2024),mGPTs是灵活照片级图像生成的理想初始化。...与分辨率感知的提示相结合,这种从弱到强的SFT策略有效地提高了Lumina-mGPT的图像生成能力。...为了将LLM的专业知识从文本领域扩展到多模态领域,如图像和视频,以前的工作(Liu等人,2023年;Lin等人,2023年;Maaz等人,2023年;Lin等人,2023b)通过编辑多模态指令调优数据集...基于FP-SFT阶段的功能图像生成能力,作者继续通过标记的图像和标注从密集标记、空间-条件图像生成和多转换数据集中将离散标记微调到Lumina-mGPT。...因此,从mGPT开始初始化,使作者能够高效训练具有性能出色,参数范围从7B到30B的Lumina-mGPT模型,仅需要使用10M个高质量的图像文本数据点。

    22010

    图像配准:从SIFT到深度学习

    编译 | 小韩 来源 | sicara.com 目录: 图像配准:从SIFT到深度学习 什么是图像配准 传统的基于特征的方法 关键点检测和特征描述 特征匹配 图像变换 深度学习方法 特征提取 Homography...什么是图像配准 图像配准就是找到一幅图像像素到另一幅图像像素间的空间映射关系。这些图像可以是不同时间(多时间配准),不同传感器在不同地方拍摄(多模式配准)。...强化学习方法的配准可视化 2016年,Liao 等人首先使用强化学习进行图像配准。他们的方法基于有监督算法进行端到端的训练。它的目标是通过寻找最佳的运动动作序列来对齐图像。...心脏MRI图像上的变形网格和位移矢量场示例 研究人员开始尝试使用神经网络来估计这些具有许多参数的大变形模型。 一个例子是上面提到的Krebs等人的强化学习方法。...它使用CNN来预测控制点网格,该控制点用于生成位移矢量场,然后根据参考图像变换感测图像。 ? 来自MNIST两个输入图像的DIRNet示意图 Quicksilver配准解决了类似的问题。

    8.1K42

    【CV实践】图像检索从入门到进阶

    Datawhale分享 作者:阿水,Datawhale成员 简介:阿水,Datawhale成员,北京航空航天大学硕士,多次获得国内外数据竞赛TOP名次 图像检索是计算机视觉中基础的应用,可分为文字搜图和以图搜图...借助于卷积神经网络CNN强大的建模能力,图像检索的精度越发提高。 本次分享,将会从基础分享图像检索的原理和流程,并具体讲解图像局部特征和全局特征的差异性,最后以图像检索比赛为案例,进行独家的分享。...图像检索入门 介绍图像检索的定义、图像检索的典型应用和流程 2. 图像检索特征 介绍图像全局特征和图像局部特征,进而图像检索过程 3....图像检索案例 以图像检索的应用和竞赛为案例,讲解解决方案 图像检索入门 ? 文字检索与内容检索 ? CBIR 应用场景 ? 成熟的图像检索应用涉及到相关算法,也是一个工程问题 ?...图像检索的本质是特征提取和相似度计算的过程 ? 图像检索特征 ? 即使相差万里的图像也有可能是相似的 ? 如果图像相似,则图像特征也相似 ? 局部特征与全局特征 ? 简易代码示例 ?

    85720

    使用Kolors生成图像:从部署到生成

    最近我接触到了一个非常有趣的项目,名为Kolors,这是一个基于深度学习的文本到图像生成模型,能够将你输入的文字描述转换成高质量的图像。作为一名喜欢探索AI生成技术的开发者,我决定尝试一下这个项目。...Kolors是一个基于潜在扩散技术的图像生成模型,支持从文本生成高质量的图像。它经过了数亿对图像和文本的训练,特别擅长复杂语义的理解,并且在中文处理上表现突出。...Miniconda3-latest-Linux-x86_64.sh # 运行安装脚本 bash Miniconda3-latest-Linux-x86_64.sh # 添加 Anaconda 路径到系统环境变量...开始生成你的图像 现在我们已经完成了部署,接下来就可以通过简单的命令生成图像。我们可以通过运行 sample.py 脚本,来将文本描述转换为图像。...个人体验与总结 在整个使用Kolors的过程中,我感受到了它的强大。无论是图像质量还是生成速度,它都远超预期。尤其是在处理中文描述时,Kolors表现出色,能够准确理解并生成符合描述的图像。

    13910

    使用条件GAN实现图像到图像的翻译

    图像处理、视觉领域的很多问题都可以看成是翻译问题,就像把一种语言翻译成另外一种语言一样。比如灰度图像彩色化、航空图像区域分割、设计图的真实虚拟等,跟语言翻译一样,很少有一对一的直接翻译。...图像整合了梯度信息、边缘信息、色彩与纹理信息,传统的图像翻译基于像素级别无法有效建模,而条件生成对抗网络(Conditional GANs)可以对这类问题有很好的效果。 基本思想 ?...GAN中的生成者是一种通过随机噪声学习生成目标图像的模型,而条件GAN主要是在生成模型是从观察到的图像与随机噪声同时学习生成目标图像的模型,生成者G训练生成输出图像尝试让它与真实图像无法被鉴别者D区分、...G尝试最小化生成损失、生成目标图像、而D尝试最大化鉴别图像是否来自生成者G,对比正常的GAN表达为 ?...不同的Patch最终生成的图像效果不一样!

    1.4K10

    经验 | OpenCV图像旋转的原理与技巧

    01 引言 初学图像处理,很多人遇到的第一关就是图像旋转,图像旋转是图像几何变换中最具代表性的操作,包含了插值、背景处理、三角函数等相关知识,一个变换矩阵跟计算图像旋转之后的大小公式就让很多开发者最后直接调用函数了事...所以决定从程序员可以接受的角度从新介绍一下图像旋转基本原理与OpenCV中图像旋转函数操作的基本技巧。...图像旋转基本原理 旋转涉及到两个问题,一个是图像旋转之后的大小会发生改变,会产生背景,通过背景填充方式都是填充黑色,此外旋转还是产生像素的位置迁移,新的位置像素需要通过插值计算获得,常见的插值方式有最近邻...是一个2x3的矩阵,但是在图像中左上角是原点,要实现围绕图像的中心位置旋转,M就要重新计算,所以OpenCV中的图像旋转矩阵为: ? 其中scale是表示矩阵支持旋转+放缩,这里可以把Scale=1。...第三列是图像旋转之后中心位置平移量。 函数支持 OpenCV中支持图像旋转的函数有两个,一个是直接支持旋转的函数,但是它支持的是90,180,270这样的特殊角度旋转。

    2.9K40

    10、图像的几何变换——平移、镜像、缩放、旋转、仿射变换 OpenCV2:图像的几何变换,平移、镜像、缩放、旋转(1)OpenCV2:图像的几何变换,平移、镜像、缩放、旋转(2)数字图像

    ,从原图像中取出第i行,并将其复制到目标图像。...4.图像旋转 4.1旋转原理 图像的旋转就是让图像按照某一点旋转指定的角度。...上边两图,可以清晰的看到,旋转前后图像的左上角,也就是坐标原点发生了变换。 在求图像旋转后左上角的坐标前,先来看看旋转后图像的宽和高。...从上图可以看出,旋转后图像的宽和高与原图像的四个角旋转后的位置有关。...综合以上,也就是说原图像的像素坐标要经过三次的坐标变换: 将坐标原点由图像的左上角变换到旋转中心 以旋转中心为原点,图像旋转角度a 旋转结束后,将坐标原点变换到旋转后图像的左上角 可以得到下面的旋转公式

    3.8K51

    【深入OpenCV图像处理:从基础到实战应用】

    引言 在医疗影像分析、工业质检、自动驾驶等领域,OpenCV作为计算机视觉的基石工具,为图像处理提供强大支持。...一、OpenCV图像处理核心操作详解 1.1 图像I/O与元数据解析 import cv2 # 高级图像读取参数详解 # 参数1:图像路径 | 参数2:读取模式(cv2.IMREAD_COLOR/cv2...) # 参数3:指定解码格式(如cv2.IMREAD_REDUCED_COLOR_2) img = cv2.imread('input.jpg', cv2.IMREAD_COLOR) # 获取图像维度信息...(高度, 宽度, 通道数) print(f"Image Shape: {img.shape}") # 输出格式:(H, W, C) # 带错误处理的图像显示方案 if img is not None...return result 三、高级特征工程 3.1 多尺度特征提取 # SIFT特征检测器配置 sift = cv2.SIFT_create( nfeatures=0, # 保留的特征点数量

    16510

    深入探索图像处理:从基础到高级应用

    图像处理是计算机视觉领域的一个重要分支,它涉及处理和分析图像以获取有用的信息。本文将带您深入探讨图像处理的核心原理、常见任务以及如何使用Python和图像处理库来实现这些任务。...我们将从基础开始,逐步深入,帮助您了解图像处理的奥秘。 图像处理基础 首先,我们将介绍图像处理的基本概念,包括图像表示、像素操作和基本的滤波技术。这些基础知识对于理解图像处理任务至关重要。...,它涉及从图像中提取具有代表性的信息。...除了处理现有图像,图像处理还涉及生成新的图像或修复损坏的图像。...图像处理的未来 最后,我们将探讨图像处理领域的最新趋势和未来发展,包括基于深度学习的方法、实时图像处理、计算机视觉与人工智能的融合等方面的创新。

    68350

    Genesis框架从入门到精通(11): 图像函数

    这将返回第二个附加图像的缩略图,并设置居左class ="alignleft"。很酷。 注:涉及图片的函数都不如文字那么直观,一图胜千言,请看我在开发环境下做的截图。特色图像算作是第一张。...如果没有特色图像也没有附加图片,此函数将返回“false”,因此可以用非常简单的 if / else返回一个默认图像。...,它将自动显示图像,否则返回false并加载默认图像。...处理图像的函数用法有点复杂,因为你必须使用数组值,但是一旦你习惯了它们,你会发现它们非常灵活和强大。...图像函数比处理文本的好玩一点,花头比较多,用的好了也能比较抓眼球 下面是多图预警

    64320

    图像的几何变换——平移、镜像、缩放、旋转、仿射变换 OpenCV2:图像的几何变换,平移、镜像、缩放、旋转(1)OpenCV2:图像的几何变换,平移、镜像、缩放、旋转(2)数字图像处理笔

    ,从原图像中取出第i行,并将其复制到目标图像。...4.图像旋转 4.1旋转原理 图像的旋转就是让图像按照某一点旋转指定的角度。...上边两图,可以清晰的看到,旋转前后图像的左上角,也就是坐标原点发生了变换。 在求图像旋转后左上角的坐标前,先来看看旋转后图像的宽和高。...从上图可以看出,旋转后图像的宽和高与原图像的四个角旋转后的位置有关。...综合以上,也就是说原图像的像素坐标要经过三次的坐标变换: 将坐标原点由图像的左上角变换到旋转中心 以旋转中心为原点,图像旋转角度a 旋转结束后,将坐标原点变换到旋转后图像的左上角 可以得到下面的旋转公式

    10.6K31
    领券