Pandas 是基于 NumPy 的一个开源 Python 库,它被广泛用于快速分析数据,以及数据清洗和准备等工作。它的名字来源是由“ Panel data”(面板数据,一个计量经济学名词)两个单词拼成的。简单地说,你可以把 Pandas 看作是 Python 版的 Excel。
数据从业者有许多工具可用于分割数据。有些人使用 Excel,有些人使用SQL,有些人使用Python。对于某些任务,使用 Python 的优点是显而易见的。以更快的速度处理更大的数据集。使用基于 Python 构建的开源机器学习库。你可以轻松导入和导出不同格式的数据。
作者:ROGER HUANG 本文翻译自:http://code-love.com/2017/04/30/excel-sql-python/ 来源:https://www.jianshu.com/p/51bb7726231b 本教程的代码和数据可在 Github 资源库 中找到。有关如何使用 Github 的更多信息,请参阅本指南。 数据从业者有许多工具可用于分割数据。有些人使用 Excel,有些人使用SQL,有些人使用Python。对于某些任务,使用 Python 的优点是显而易见的。以更快的速度处理更大
在数据分析与机器学习中,经常会遇到处理数据的问题。而使用Python进行数据处理和分析时,pandas库和numpy库是常用的工具。其中,pandas库提供了DataFrame数据结构,numpy库提供了ndarray数据结构。然而,有时候我们会遇到DataFrame格式数据与ndarray格式数据不一致导致无法进行运算的问题。本文将介绍一种解决这个问题的方法。
本文通过介绍Apache Spark在Python中的应用来讲解如何利用PySpark包执行常用函数来进行数据处理工作。
一个scikit-learn教程,通过将数据建模到KMeans聚类模型和线性回归模型来预测MLB每赛季的胜利。
Python数据分析——Numpy、Pandas库 总第48篇 ▼ 利用Python进行数据分析中有两个重要的库是Numpy和Pandas,本章将围绕这两个库进行展开介绍。 Numpy库 Numpy
pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库。本文是对它的一个入门教程。
Pandas作为大数据分析最流行的框架之一。用好Pandas就像大数据工程师用好SQL用好Excel一样重要。如果你打算学习 Python 中的数据分析、机器学习或数据科学工具,大概率绕不开Pandas库。Pandas 是一个用于 Python 数据操作和分析的开源库。
Pandas是Python程序语言中一种开源、高性能、易于使用的数据结构和数据分析工具。Pandas添加了数据结构和工具,用于处理类似表格的数据,即 Series 和 Data Frames。它主要提供的数据操作工具有:
今天是pandas数据处理专题的第二篇文章,我们一起来聊聊pandas当中最重要的数据结构——DataFrame。
列表推导是一种用于处理列表的简单单行语法,可让您访问列表的各个元素并对其执行操作。
NumPy,即 Numerical Python,是 Python 中最重要的数值计算基础包之一。许多提供科学功能的计算包使用 NumPy 的数组对象作为数据交换的标准接口之一。我涵盖的关于 NumPy 的许多知识也适用于 pandas。
pandas 提供了快速便捷处理结构化数据的大量数据结构和函数。自从2010年出现以来,它助使 Python 成为强大而高效的数据分析环境。pandas使用最多的数据结构对象是 DataFrame,它是一个面向列(column-oriented)的二维表结构,另一个是 Series,一个一维的标签化数组对象。
“软件工程师阅读教科书作为参考时不会记住所有的东西,但是要知道如何快速查找重·要的知识点。”
pandas的官网地址为:https://pandas.pydata.org/ 官网首页介绍了Pandas,
数据经过采集后通常会被存储到Word、Excel、JSON等文件或数据库中,从而为后期的预处理工作做好数据储备。数据获取是数据预处理的第一步操作,主要是从不同的渠道中读取数据。Pandas支持CSV、TXT、Excel、JSON这几种格式文件、HTML表格的读取操作,另外Python可借助第三方库实现Word与PDF文件的读取操作。本章主要为大家介绍如何从多个渠道中获取数据,为预处理做好数据准备。
Spark无疑是当今数据科学和大数据领域最流行的技术之一。尽管它是用Scala开发的,并在Java虚拟机(JVM)中运行,但它附带了Python绑定,也称为PySpark,其API深受panda的影响。在功能方面,现代PySpark在典型的ETL和数据处理方面具有与Pandas相同的功能,例如groupby、聚合等等。
使用 for 循环可以遍历 DataFrame 中的每一行或每一列。需要使用 iterrows() 方法遍历每一行,或者使用 iteritems() 方法遍历每一列。
用Python做数据分析光是掌握numpy和matplotlib可不够,Pandas是必须要掌握的一个重点,numpy虽然能够帮我们处理处理数值型数据,但是这还不够,很多时候,我们的数据除了数值之外,还有字符串,还有时间序列等,比如:我们通过爬虫获取到了存储在数据库中的数据。
本章给大家演示一下在实际工作中如何结合 Pandas 库和 openpyxl 库来自动化生成报表。假设我们现在有如图 1 所示的数据集。
import numpy as np import pandas as pd from pandas import Series, DataFrame Series创建 基本知识 类似于一维数组的对象 由一组数据(各种Numpy数据类型)和数据标签(索引)组成 左边索引,右边数值; 不指定索引的话,自动从0开始; 索引也可以自定义:index=[‘a’, ‘b’, ‘c’, ‘d’] 通过Python的字典类型创建 obj = pd.Series([4, 7, 8, -1]) obj 0 4 1
CSV文件是一种纯文本文件,其使用特定的结构来排列表格数据。CSV是一种紧凑,简单且通用的数据交换通用格式。许多在线服务允许其用户将网站中的表格数据导出到CSV文件中。CSV文件将在Excel中打开,几乎所有数据库都具有允许从CSV文件导入的工具。标准格式由行和列数据定义。此外,每行以换行符终止,以开始下一行。同样在行内,每列用逗号分隔。
假设你将一些数据储存在Excel或者Google Sheet中,你又想要尽快地将他们读取至DataFrame中。
在我看来,对于Numpy以及Matplotlib,Pandas可以帮助创建一个非常牢固的用于数据挖掘与分析的基础。而Scipy(会在接下来的帖子中提及)当然是另一个主要的也十分出色的科学计算库,但是我认为前三者才是真正的Python科学计算的支柱。
本篇文章将带你了解报表自动化的流程,并教你用Python实现工作中的一个报表自动化实战,篇幅较长,建议先收藏,文章具体的目录为:
Python pandas包用于数据操作和分析,旨在让您以更直观的方式处理标记或关系数据。
如果读者们计划学习数据分析、机器学习、或者用 Python 做数据科学的研究,你会经常接触到 Pandas 库。Pandas 是一个开源、能用于数据操作和分析的 Python 库。
Pandas是Python中重要的数据处理和分析库,它提供了强大的数据结构和函数,尤其是DataFrame,使数据处理变得更加高效和便捷。然而,对于新手来说,在DataFrame中插入一列可能是一个令人困惑的问题。在本文中,我们将分享如何解决这个问题的方法,并帮助读者更好地利用Pandas进行数据处理。
Series是一种类似于一维数组的对象,它由一组数据以及一组与之相关的数据标签(索引)组成,创建Series对象的语法如下:
在数据分析中,数据的选择和运算是非常重要的步骤。数据选择和运算是数据分析中的基础工作,正确和高效的选择和运算方法对于数据分析结果的准确性和速度至关重要。
大数据文摘作品,转载要求见文末 编译 | 徐宇文,蒋晔、范玥灿 卞峥,yawei xia 技术早已成为金融业的一项资产:金融交易的高速、高频与超大数据体量结合,促使金融机构在一年一年不断地加深对技术的关注,在今天,技术已经切实成为了金融界的一项主导能力。 在金融界最受欢迎的编程语言中,你会看到R和Python,与C++,C#和Java这些语言并列。在本教程中,你将开始学习如何在金融场景下运用Python。本教程涵盖以下这些方面: 基础知识:对于金融入门阶段的读者,你将会首先学到股票和交易策略,什么是时间序列
本文通过一个项目案例,详细的介绍了如何从 Bokeh 基础到构建 Bokeh 交互式应用程序的过程,内容循序渐进且具有很高的实用性。本文共有两万字左右,属于纯干货分享,强烈推荐大家阅读后续内容。
Pandas进阶修炼120题系列一共涵盖了数据处理、计算、可视化等常用操作,希望通过120道精心挑选的习题吃透pandas。并且针对部分习题给出了多种解法与注解,动手敲一遍代码一定会让你有所收获!
如果你是数据科学家、数据分析师、机器学习工程师,或者任何 python 数据从业者,你一定会高频使用 pandas 这个工具库——它操作简单功能强大,可以很方便完成数据处理、数据分析、数据变换等过程,优雅且便捷。
可以把DataFrame看作由Series对象组成的字典,其中key是列名,值是Series Series和Python中的列表非常相似,但是它的每个元素的数据类型必须相同
Pandas这个库对Python来说太重要啦!因为它的出现,让Python进行数据分析如虎添翼,作为Python里面最最牛逼的库之一,它在数据处理和数据分析方面,拥有极大的优势,受到数据科学开发者的广大欢迎。
在本文中,我将分享4个在一行代码中完成的Pandas操作。这些操作可以有效地解决特定的任务,并以一种好的方式给出结果。
来源:www.cnblogs.com/jclian91/p/12305471.html
本章介绍了 Python 的基本数据类型和数据结构。尽管 Python 解释器本身已经带来了丰富的数据结构,但 NumPy 和其他库以有价值的方式添加了这些数据结构。
安装 pandas 的最简单方法是作为Anaconda发行版的一部分安装,这是一个用于数据分析和科学计算的跨平台发行版。Conda包管理器是大多数用户推荐的安装方法。
创建数据- 首先创建自己的数据集进行分析。这可以防止阅读本教程的用户下载任何文件以复制下面的结果。我们将此数据集导出到文本文件,以便您可以获得的一些从csv文件中提取数据的经验
使用python进行数据分析时,经常会用Pandas类库处理数据,将数据转换成我们需要的格式。Pandas中的有两个数据结构和处理数据相关,分别是Series和DataFrame。
今天给大家分享一篇我新书《对比Excel,轻松学习Python报表自动化》中关于报表自动化实战的内容。关于这本书的介绍见:时隔500天后,对比Excel系列又一新书发布 本篇文章将带你了解报表自动化的流程,并教你用Python实现工作中的一个报表自动化实战,篇幅较长,建议先收藏,文章具体的目录为: 1.Excel的基本组成 2.一份报表自动化的流程 3.报表自动化实战 - 当日各项指标同环比情况 - 当日各省份创建订单量情况 - 最近一段时间创建订单量趋势 4.将不同的结果进行合并
学习 Pandas排序方法是开始或练习使用 Python进行基本数据分析的好方法。最常见的数据分析是使用电子表格、SQL或pandas 完成的。使用 Pandas 的一大优点是它可以处理大量数据并提供高性能的数据操作能力。
作为一个在进入数据分析领域之前干过开发的攻城狮,我看到我的同行以及新手在使用 Pandas 时会犯很多低级错误。
今天给大家分享一篇俊红新书《对比Excel,轻松学习Python报表自动化》中关于报表自动化实战的内容,文末也会免费赠送几本新书。
领取专属 10元无门槛券
手把手带您无忧上云