首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Nat. Mach. Intell. | Reusability report: 利用条件循环神经网络设计有机光电分子

今天给大家介绍美国麻省理工学院材料科学与工程系的Somesh Mohapatra, Tzuhsiung Yang & Rafael Gómez-Bombarelli在Nature Machine Intelligence上发表的一篇论文"Reusability report: Designing organic photoelectronic molecules with descriptor conditional recurrent neural networks"。该研究主要基于Esben Jannik Bjerrum及其同事在2020年5月18日发表在Nature Machine Intelligence上的一篇论文” Direct steering of de novo molecular generation with descriptor conditional recurrent neural networks”,Bjerrum及其同事提出了一个基于条件递归神经网络(cRNNs)的生成框架,用于药物设计的背景下生成特定性质的分子。Rafael Gómez-Bombarelli及其同事将该方法复制到一个不相关的化学空间上,通过设计训练数据之外属性的有机光电子分子(OPMs),生成具有接近目标值的连续属性的有机光电分子。

05

准确率99.9%!如何用深度学习最快找出放倒的那张X光胸片(代码+数据)

大数据文摘作品 编译:Zhifu、元元、Molly、钱天培 医学图像数据的质量一直是个老大难题。难以清理的数据制约着许多深度学习的应用。 而实际上,深度学习本身就是清洗医疗数据的好帮手。 今天,我们就来讲一个案例,展示如何用深度学习迅速清洗一个杂乱的医疗图像数据集。 案例的主角是胸部X光图像。 由于设备制造商的不同,胸部X光的图像有可能是水平的,也可能是垂直翻转的。他们可能会倒置像素值,也可能会旋转。问题在于,当你处理一个庞大的数据集(比如说50到100万张图像)的时候,如何在没有医生查看的情况下发现畸变?

06

万字长文 - Nature 综述系列 - 给生物学家的机器学习指南 4 (生物应用的挑战)

也许建模生物数据的最大挑战是生物数据的多样性。生物学家使用的数据包括基因和蛋白质序列、随时间变化的基因表达水平、进化树、显微图像、3D结构和互作网络等。我们在表2中总结了特定生物数据类型的一些最佳实践和重要注意事项。由于所遇到的数据类型的多样性,生物数据通常需要一些定制的解决方案来有效地处理它们,这使得很难推荐现成的工具,甚至是通用的机器学习指南来进行模型的选择,训练程序和测试数据将在很大程度上取决于人们想要回答的确切问题。然而,为了在生物学中成功地使用机器学习,需要考虑一些常见的问题,但也需要更广泛地考虑。

02

在表格数据上,为什么基于树的模型仍然优于深度学习?

机器之心报道 机器之心编辑部 为什么基于树的机器学习方法,如 XGBoost 和随机森林在表格数据上优于深度学习?本文给出了这种现象背后的原因,他们选取了 45 个开放数据集,并定义了一个新基准,对基于树的模型和深度模型进行比较,总结出三点原因来解释这种现象。 深度学习在图像、语言甚至音频等领域取得了巨大的进步。然而,在处理表格数据上,深度学习却表现一般。由于表格数据具有特征不均匀、样本量小、极值较大等特点,因此很难找到相应的不变量。 基于树的模型不可微,不能与深度学习模块联合训练,因此创建特定于表格的深

02
领券